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End-to-end differentiable models

ML training: minimizing a loss w.r.t. weights of a model
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e Composition of complex, explicit, analytical operations with weights.
e Loss minimization with first-order, gradient-based methods.

e Modern, large-scale models and datasets: automatic differentiation.
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Discrete operations

Dynamic programs
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Clustering

e Discrete operations / algorithms at the heart of computer science.

e Powerful tool to deal with structured problems / data.
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Structured inference and prediction

Discrete operators allow us to leverage structure.
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e Use of an implicit and discrete function, challenge for gradients
e Challenge: moving embeddings towards “correct solution” continuously

e |n classification, soft “arg” max solution, smooth approximation.
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Softmax
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e Softmax a smooth, explicit approximation of “hard” argmax over simplex.

e Equivalent regularized / perturbed variational definition, with closed form

y (0) = arggéaxwa 0), |y ()]s = 0i=(q).
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Softmax

e Softmax a smooth, explicit approximation of “hard” argmax over simplex.

e Equivalent regularized / perturbed variational definition, with closed form

* . 607;/8
y:(0) = argmax(y,0) —Q(y), [yZ(0)]; = e
yel Zj e’
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Generalized softmax (?)
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e Most discrete optimizers can be naturally written as

y*(0) = argmax(y, 0)
yel

e How to generalize these methods, to have differentiable proxies?
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Perturbed maximizer

Discrete decisions: optimizers of linear program over C, convex hull of ) C R¥

F(0) = max(y,0), and y*(0)=argmax(y,0) = VeF(0).

yeC yeCl
_ RF
L VO
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Perturbed maximizer: average of solutions for inputs with noise €7

F=(0) = Blmax(y, 0+e2)], y2(0) = Ely"(0+:2)] = E[argéncaxwa 0+eZ)| = VolF.(0).
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Perturbed maximizer: average of solutions for inputs with noise ¢4

F.(0) = E[r;lgg@, 0+eZ)|, y=(0) =

Ely*(0+cZ2)] = E[argg(lzaX(y, O+cZ)) = VoF.(0).
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Perturbed model

Model of optimal decision under uncertainty Luce (1959), McFadden et al. (1973)

Y = argmax(y,0 + €2
yeC

Follows a perturbed model with Y ~ pg(y), expectation yZ(0) = E, [Y].

Perturb and map Papandreou & Yuille (2011), FT Perturbed L Kalai & Vempala (2003)

Features Costs Shortest Path Perturbed Path € =0.5 Perturbed Path € = 2.0
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Example. Over the unit simplex C = A% with Gumbel noise Z, F(f) = max; 0;.
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Why? and How?

Learning problems:

Features X;, model output 0,, = g,(X;), prediction Ypred = yZ(04), loss L

F(w) = L(y:(0w) ,v:), gradients require Oy yZ(6.,) .

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For 0 ¢ RY, ZW .. Z(M)iid. copies
g =y* (0 +e2)

Unbiased estimate of y*(6) given by

M

1
¥ _ E ()
yg,M(e) - M 6_1 y *

Q.Berthet - “Differentiable Almost Everything” workshop - ICML 2023
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Properties

Mirror maps: For C with full interior, Z with smooth density u, full support

F. strictly convex, gradient Lipschitz. (2 strongly convex, Legendre type.

R4 A C

 JES

yz(0)

V\W/

Differentiability. Functions are smooth in the inputs. For u(z) o exp(—v(2))

y=(0) = VoI:(0) = Ely™ (0 +eZ)| = E[F(0 +c2)V.v(Z)/e],
Bpy:(0) = V2E.(0) = E[y*(0 4+ e Z2)V.v(Z) T Je] .

Perturbed maximizer yZ never locally constant in 6. Abernethy et al. (2014)

Q.Berthet - “Differentiable Almost Everything” workshop - ICML 2023 12/31



Properties

Mirror maps: For C with full interior, Z with smooth density u, full support

F. strictly convex, gradient Lipschitz. (2 strongly convex, Legendre type.

R4 A C

V\W/

Differentiability. Functions are smooth in the inputs. For u(z) o exp(—v(2))

y=(0) = VoI:(0) = Ely™ (0 +eZ)| = E[F(0 +c2)V.v(Z)/e],
Bpy:(0) = V2E.(0) = E[y*(0 4+ e Z2)V.v(Z) T Je] .

Perturbed maximizer yZ never locally constant in 6. Abernethy et al. (2014)

Q.Berthet - “Differentiable Almost Everything” workshop - ICML 2023 12/31



Learning with perturbed optimizers

Machine learning pipeline: variable X, discrete label y, model outputs 6 = g,,(X)

Discrete optimizer

Inputs Model Embedding space Ground truth

Labels are solutions of optimization problems (one-hots, ranks, shortest paths)

Small modification of the model: end-to-end differentiable
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Learning with perturbations and Fenchel-Young losses

Within the same framework, possible to virtually bypass the optimization block

-——
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\

Perturbed optimizer

Inputs Model Embedding space Ground truth

Fenchel-Young losses Easier to implement, no Jacobian of yZ. Blondel et al (20)

Population loss minimized at ground truth for perturbed generative model.
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Learning with perturbations and Fenchel-Young losses

Motivated by model where y; = argmaxyedgwo(Xi) +eZ;,y)

——
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\

Perturbed optimizer

Inputs Model Embedding space Ground truth

Stochastic gradients for empirical loss only require

VoL(0 = guw(Xi);y:) = y2(0) — yi = yZ (9w (X)) — v -

Simulated by a doubly stochastic scheme.

Q.Berthet - “Differentiable Almost Everything” workshop - ICML 2023 15/31



Computations

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For 0 ¢ R4, ZWW ... ZM) jid. copies . C

y& =" (0 +2Y)

Unbiased estimate of y*(6) given by

I
Ye 0 ( Zy( ) REC)

Supervised learning;:

Features X;, model output 0,, = g,,(X;), prediction Ypred = Y2 (Ow).

Stochastic gradient in w:

Vuli(w) = Ougw(Xi) - (y2(0) — Vi)
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Computations

Monte Carlo estimates. Perturbed maximizer and derivatives as expectations.

For 0 ¢ R4, ZW .. ZM) jid. copies . C

y = y* (0 +e2¥)

Unbiased estimate of yX(6) given by

M
_ 1 ,
Ye M (0) = M;y( ). By (6)
Supervised learning;:

Features X;, model output 0,, = g,(X;), prediction Ypred = Y2 (Ow).
Stochastic gradient in w (doubly stochastic scheme)
| M
VuFi(w) = 0ugw(X;) - (M ;y*(ﬁ -+ sZ(e)) — YL) .
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Experiments

Learning to rank: Experiments on 4k instances of 100 vectors to rank.

Robustness to noise observed for some tolerated variance

Perfect Ranks

o~
—o— Perturbed FY
80% - o— Perturbed squared loss
—eo— Squared loss
60% - ---- Blackbox loss
40% A
20% -
0% 1
1072 1071 100 10! 107 103

Fenchel-Young loss is convex in w: linear model, possible theoretical analysis.
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Experiments

Learning from shortest paths: From 10k examples of Warcraft 96 x 96 RGB
images, representing 12 X 12 costs, and matrix of shortest paths. (Vlastelica et al. 19)

Features Costs Shortest Path Perturbed Path €e=0.5 Perturbed Path e =2.0

-

Train a CNN for 50 epochs, to learn costs recovery of optimal paths.

Shortest Path Perfect Accuracy Cost ratio to optimal
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20% — = I — Zir;urtzed FY
80% oSO SENIN AT T 1.08{! or
- “ 1
70% I”l :
0% |I 10614
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50%
o 'l 1.04] W\ A
40% I LAY /\
30% I 1.02 \"\/'\" o ”» ll\\
mv' = Perturbed FY ’ Ak 2 et e T =
0
: == Squared loss
10% = = GE for £, 1.00
0%
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e Deep embedding and alignment of protein sequences

Nature methods, 2023
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Protein alignment

e Learning character-wise embeddings of protein sequences.

e Using it to compute costs of an alignment problem (dynamic programming).

[ASALSGT. . JA| . (T} . .AILSG] Protein sequence

Embedding space

\ =
]
[AGSLSAT. . [G] . [T] . .ALSIG] ..

Predicted alignment
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Protein alignment

e Learning character-wise embeddings of protein sequences.

e Using it to compute costs of an alignment problem (dynamic programming).

Ttrue
[ASALSGT. . JAL . |T| . .AILSG]
L1
[ ]
(1, T2)
“Trainables” 9
Embeddings
Similarity
[AGSLSAT. . . .ALSIG] Gap penalties
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Differentiable alignment

e Given fixed substitution/insertion costs, local alignment problem.
e Smith-Waterman problem solved by DP, to align proteins.

e Non-differentiable solution, introducing perturbations

Alignment as a biologically-plausible sequence similarity measure

EELTKPRLLWALYFNMRDALSSG
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BLOSUMG62 substitution Aligned sequences
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Differentiable alignment

e Given fixed substitution/insertion costs, local alignment problem.
e Smith-Waterman problem solved by DP, to align proteins.

e Non-differentiable solution, introducing perturbations

glg Sogg_lreAl
Differentiable Smith-Waterman alignments
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1 Al_ — _II/: : (o] A
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0 T &8 s c
Model Predicted Aﬁgnment
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Technique based on team’s methodological work
8
Yields a differentiable version of the alignment algorithm
GO gle ResearCh Confidential + Proprietary P8
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DEDAL: End-to-end learning to align

e From sequences to embeddings, costs, to perturbed alignments.

e Transformer architecture trained on databases of aligned proteins.
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Original image permutation label encoder downstream tasks pre-training
y =(4,72,0,5,3,8,1,6) ranking loss

e Self-supervised learning of audio representations from permutations
with differentiable ranking

A. Carr, Q. Berthet, M. Blondel, O. Teboul, N. Zeghidour
IEEE Signal Processing Letters, 2021
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e Applications:

Digital pathology Thandiackal et al. (22), Patch selection Cordonnier et al. (21),
Video Token Selection Wang et al. (22), . . .

e Algorithmic improvements: parralelized optimization Dubois-Taine et al. (22)



F. Llinares Q. Berthet

e Differentiable Clustering with Perturbed Spanning Forests
Preprint, 2023



Differentiable Clustering

e Transformer architecture trained on databases of aligned proteins.

O E Diff. Clustering <~—

| | p—
P8 . aa
- O O simiariy Clustering | .

) LALL(D) A (S5Mp):  Partial
R matrix 7

. o g information
Features Model Embeddings Ak(E) 7777777 M; k(z) Vs Lry.c
Prediction Loss gradient

e Semi-supervised clustering.

e Discovery of held-out classes.

e Presentation and poster today.
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