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Abstract

When the infection prevalence of a disease is low, Dorfman showed 80 years
ago that testing groups of people can prove more efficient than testing people
individually. Our goal in this paper is to propose new group testing algorithms that
can operate in a noisy setting (tests can be mistaken) to decide adaptively (looking
at past results) which groups to test next, with the goal to converge to a good
detection, as quickly, and with as few tests as possible. We cast this problem as a
Bayesian sequential experimental design problem. Using the posterior distribution
of infection status vectors for n patients, given observed tests carried out so far,
we seek to form groups that have a maximal utility. We consider utilities such as
mutual information, but also quantities that have a more direct relevance to testing,
such as the AUC of the ROC curve of the test. Practically, the posterior distributions
on {0, 1}n are approximated by sequential Monte Carlo (SMC) samplers and the
utility maximized by a greedy optimizer. Our procedures show in simulations
significant improvements over both adaptive and non-adaptive baselines, and are
far more efficient than individual tests when disease prevalence is low. Additionally,
we show empirically that loopy belief propagation (LBP), widely regarded as the
SoTA decoder to decide whether an individual is infected or not given previous
tests, can be unreliable and exhibit oscillatory behavior. Our SMC decoder is more
reliable, and can improve the performance of other group testing algorithms.

1 Introduction

Singling out infected individuals in a population that has little immunity to a pathogen is of paramount
importance to control the propagation of an epidemic. When tests are expensive and the base infection
rate is low, an approach first pioneered by Dorfman [17] consists in pooling individuals in disjoint
groups (e.g. by pooling 5 nasal swabs) and test only those pooled samples first (e.g. to detect traces of
virus RNA in each pool). In a second stage, only samples that belonged to positive groups are re-tested,
one-by-one, to single out positives. Dorfman showed that this two-stage group testing procedure was
optimal in an idealized setup, by choosing a group size that is a (decreasing) function of the disease
prevalence. Dorfman’s procedure is therefore well motivated mathematically, and reportedly in use to
test for SARC-CoV-2 infection at scale [41, 46]. Since Dorfman’s seminal work on medical testing,
the field of group testing at large has significantly grown, with applications considered in quality
control [43], communications [7, 45], molecular biology [6, 34], pattern matching [27, 12], database
systems [13], traitor tracing [31, 24], or machine learning [47]; see [3] for a recent review.

Group testing regimes: adaptiveness and noise. Group testing strategies can be non-adaptive,
when every group to be tested is decided beforehand, or adaptive, when the tests are performed in
several stages, and when groups to be tested at the next stage are decided using results from all tests
performed previously [37]. For example, Dorfman’s strategy is adaptive and has two stages. Group
testing strategies can be also be designed to handle noisy tests, i.e. account for the fact that tests
can make mistakes, or, like Dorfman’s, expect on the contrary that tests are noiseless. There exists
a large body of work on adaptive and non-adaptive group testing in the noiseless setting [33, 18],

ar
X

iv
:2

00
4.

12
50

8v
5 

 [
st

at
.M

E
] 

 1
2 

Ju
n 

20
20



where adaptive strategies tend to have better theoretical guarantees and result in more practical
algorithms than non-adaptive ones [38, 2, 37]. For instance, Hwang [21] proposed a multi-stage
adaptive binary splitting algorithm, which achieves the information-theoretical asymptotic lower
bound on the number of tests needed to identify all infected individuals when the population size
increases, and the proportion of infected individuals vanishes [5]. Additionally, it is also known, in
the noiseless case, that non-adaptive designs can be suboptimal compared to adaptive strategies in
some regimes [1], while optimal two-stage adaptive algorithms are also well understood [32, 15].

Noisy, adaptive group testing. With Covid-19 as a backdrop, where RT-PCR tests are known to be
both in short supply and noisy [44, 46], the noisy adaptive setting is relevant: As noise increases, the
possibly contradictory results of noisy tests can put a spoke in the wheel of combinatorial approaches.
In the noisy regime, information-theoretic limits of group testing are well understood [28, 29, 4,
5, 38, 2] but most existing group testing strategies are non-adaptative [29, 10, 11, 39], with the
exception of Cai et al. [8] and Scarlett [37]. These two algorithms have various optimality properties
in an asymptotic regime, when the population size increases and the fraction of infected individuals
vanishes. However, little is known about the quality of these methods in a non-asymptotic regime,
with a finite horizon, and a small but non-vanishing proportion of infections in the population.

Our contributions. In this work, we depart from the standard asymptotic analysis, to propose a
sequential Bayesian optimal experimental design (BOED) approach to group testing, consisting of:
• We derive a BOED [9] approach for group testing, in which groups are sequentially selected to
maximize the expected utility of their hypothetical test results at the next stage. We consider two
utility functions: the information gain (or mutual information) provided by a new wave of tests,
or, closer to health professionals’ requirements, the AUC of the ROC curve given by the marginal
posterior distribution. Both are optimized using greedy forward-backward selection.
• Evaluating these utilities requires having access to an approximation of the posterior distribution of
infection states of all n individuals, given all group tests observed up to that stage, with known priors
on infection and noise. We use SMC samplers [16] at each testing stage, to approximate that posterior
as a cloud of particles in {0, 1}n. SMC was used previously for other Bayesian design problems [36];
ours builds upon [40], using a Gibbs sampler as Markov chain Monte Carlo (MCMC) kernel.
• Noisy group testing approaches use a decoder, an algorithm tasked with outputting an infection
probability vector from test results. We show that the marginal distribution produced by our SMC
samplers outperform those produced by LBP, the SoTA decoder [42, 3, §3.3]. Open source code:
https://github.com/google-research/google-research/tree/master/grouptesting

2 Background on Group Testing

Prior on infection. We consider a population of n individuals, who can be either infected or not.
The infection status of the i-th individual is modeled with a binary random variable (r.v.) Xi, where
Xi = 1 if that individual is infected and Xi = 0 otherwise. We write X = (X1, . . . , Xn) ∈ {0, 1}n
for the infection status of the whole population. We assume that a prior probability distribution for X
is given. For example, each infection may be modelled as an independent Bernoulli r.v. Xi ∼ B(qi).
Here, qi is a prior infection rate, either shared across individuals, or estimated for each using other
covariates. Under this model, the probability mass function (pmf) of the prior probability would
satisfy, for any x = (x1, . . . , xn) ∈ {0, 1}n, π0(x) := P0(X = x) =

∏n
i=1 q

xi
i (1− qi)1−xi . More

informed and non-independent priors (relating for instance two people in the same household) may
be considered; as discussed later in §A.5, we approximate the prior π0 with a weighted cloud of
particles in {0, 1}n, giving us the flexibility to consider any sort of initial prior.

Group vs. individual testing in the presence of testing noise. Our goal is to infer which individuals
are infected and which ones are not. A straightforward approach to do so would be to test each
individual one-by-one. However, this raises two issues: (i) this requires n tests, which is costly if n is
large, and inefficient if infection prevalence is low; (ii) tests can be noisy (e.g., nose swabs tested
with RT-PCR create false negatives and, to a lesser extent, false positives), so by testing only once
each individual, there is a risk of error. In this paper we solve both issues by relying on group tests.
We assume that for any given group g ⊂ {1, . . . , n}, we can pool samples from that group and test
that “mixture of samples” to reveal the group’s binary status: it is either negative, when none of the
individuals in the group is infected, or positive, when one or more individuals are infected.
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Probabilistic inference from a single group. For an integer n, we write JnK := {1, . . . , n}. G is
the set of all non-empty groups, i.e. non-empty subsets of JnK. With a slight overload of notations, a
group g ∈ G is also equivalently represented as a binary vector g ∈ {0, 1}n, where the i-th element
of g is 1 if and only if i ∈ g. We write g for gT1n, the size of group g. We write

for all g,x ∈ {0, 1}n, [g,x] :=
∨
i∈g

xi = 1−
∏
i∈g

(1− xi) = max(1,gTx) ∈ {0, 1} , (1)

the binary status of group g given the binary status of individuals x. Indeed, [g,x] is equal to 0 if and
only if all entries in x indexed by g are equal to 0. Given a group g ∈ G, the output of a group test
associated to g is a binary r.v. Yg that assesses the group status [g,X]. We assume that conditioned
on X, all considered group tests are independent from each other, and that each group test suffers
from noise due to the specificity σg and sensitivity sg parameters of the testing device, which both
depend on the size g of g. For any group g ∈ G, writing ρg := sg + σg − 1, we have

P(Yg = 1 | [g,X] = 1) = sg , P(Yg = 0 | [g,X] = 0) = σg , (2)

∀x ∈ {0, 1}n, y ∈ {0, 1},P(Yg = y |X = x) = (σg − ρg[g,x])
(1−y)

(1− σg + ρg[g,x])
y
. (3)

Inference for batches of groups. We assume that up to k tests can be run simultaneously, in parallel,
on a testing device. Consequently, we tailor our strategies so that they propose a batch of k groups
G = (g1, . . . ,gk) ∈ Gk, equivalently represented as a n × k binary membership matrix. Given a
batch G of k groups, we define the random vector YG := (Yg1

, . . . , Ygk
) of its k independent test

outcomes. The probability of YG taking values y ∈ {0, 1}k conditionally on X is, using (3):

P(YG = y |X = x) =

k∏
i=1

(σgi − ρgi [gi,x])
(1−yi) (1− σgi + ρgi [gi,x])

yi . (4)

3 Bayesian Optimal Experimental Design to Select Useful Groups

In T -stage adaptive group design, given a finite horizon T ∈ N, our goal is to select sequentially
batches of groups Gt ∈ Gk at each stage 1 ≤ t ≤ T . At the end of stage t ≥ 1, batches G1, . . . ,Gt

were selected previously, and tested with observed outcomes YG1 = y1, . . . ,YGt = yt. Let us
denote by Pt the probability conditioned to all tests seen up to stage t, i.e., for any new batch G,

Pt(X = x ,YG = yG) := P
(
X = x ,YG = yG |YG1 = y1, . . . ,YGt = yt

)
= πt(x)× P (YG = yG |X = x) ,

where P (YG = yG |X = x) is given by (4) and πt is the posterior pmf of the vector X of infection
states, given all those test results revealed up to stage t, i.e.:

πt(x) := Pt(X = x) = P
(
X = x |YG1 = y1, . . . ,YGt = yt

)
. (5)

From πt, we propose to follow a myopic approach [9] by choosing for stage t + 1 a new batch G
that has largest utility U(G, πt) w.r.t. πt. We introduce first a simple utility grounded on information
theory, before presenting a more general and flexible formulation for utilities U in (9) below.

Maximizing mutual information. Ideally, a batch of k tests to be tested at time t + 1 should be
such that YG reveals as much information as possible on X, at time t. Since (X,YG) are both r.v.
under Pt, this can be achieved by maximizing their mutual information (MI) utility in G [14]:

UMI(G, πt) := IPt
(X; YG) = HPt

(YG)−HPt
(YG|X) = HPt

(YG)−
∑
x

πt(x)HP(YG|X = x) ,

where, for any r.v. Z with distribution PZ and pmf η(z), HPZ
(Z) = −EPZ

[log η(Z)] is the entropy.
The MI is a standard utility function in Bayesian experimental design [25, 9, 19]. In our particular
setting, UMI can be evaluated thanks to this lemma (proof in §A.1):
Lemma 1. For a group g, define fπt

(g) :=
∑

x πt(x) [g,x]. For G = (g1, . . . ,gk) ∈ Gk, one has

IPt
(X ; YG) = HPt

(YG)−
k∑
i=1

(
hσgi

+ γgifπt
(gi)

)
, (6)
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where h(u) = −u log u − (1 − u) log(1 − u) is the binary entropy, and for any group size g,
hσg = h(σg), hsg = h(sg), and γg = hsg − hσg . In the case of a single group g ∈ G, this reduces
to

IPt
(X;Yg) = h (ρg fπt

(g) + 1− σg)− γgfπt
(g)− hσg

. (7)

When selecting one and only one group, choosing g boils down to maximizing (7). The MI utility of a
group is directly evaluated from fπt

(g), the expected value of its negative/positive status. Therefore, to
maximize its MI utility, fπt

(g) should be close of the real argmax of z 7→ h(ρgz+1−σg)−γgz−hσg
.

If σg = sg = 1, that map reduces to h(z), and is maximized at 1/2. Therefore, in a noiseless setting,
a group g is deemed useful, from a MI viewpoint, if its test r.v. Yg is almost an unbiased coin flip.

Other utilities. Instead of relying on information theoretic quantities, we may want to handle more
specific criteria. Because the posterior πt defines what test results YG are likely to be at time t, we
can define a random probability for X, by conditioning on a test outcome YG for G:

πG
t (x) := Pt(X = x|YG) . (8)

πG
t can be interpreted as a family of 2k hypothetical posteriors at time t + 1 for X, one for each

possible outcome for YG. In BOED [9] a guiding principle is to score each of these hypothetical
posteriors using a functional Φ, and to choose groups that maximize that score in expectation:

Gt+1 ∈ argmaxG∈Gk UΦ (G, πt) := EPt
Φ(πG

t ) . (9)

If we set Φ to be the negative entropy, choosing groups G that decrease maximally the expected
conditional entropy of X at t + 1, we recover the MI criterion (see §A.2). Although we expect
lower entropy to correlate with improved testing performance, we use the flexibility of the BOED
framework to optimize directly more relevant utilities. We propose to maximize the expected area
under the ROC curve (AUC) of the marginal decoder: For a pmf π on {0, 1}n, the marginal decoder
m(π) ∈ [0, 1]n is the vector of marginal probabilities that each individual is infected under π. Given
an infection status x ∈ {0, 1}n, where Pos(x) =

∑n
i=1 xi and Neg(x) =

∑n
i=1(1 − xi) are the

total number of infected and non-infected, we write ψAUC(s,x) the AUC of a predictor s ∈ Rn:

ψAUC(s,x) =

∑n
i,j=1 xi(1− xj)

(
1(si > sj) + 1

21(si = sj)
)

Pos(x) Neg(x)
. (10)

where, if either Pos or Neg is 0, the AUC is discarded from our computations. The expected AUC of
the marginal decoder is therefore Φ(π) =

∑
x π(x)ψAUC(m(π),x), which we plug directly in (9).

4 Algorithms

In order to implement the sequential BOED procedure described in §3, we now describe in more
details the algorithmic components needed at each stage to (i) maintain a computationally tractable
description of the posterior distribution (5) after each stage, (ii) compute the utility of a batch of
groups (r.h.s. of 9), (iii) find a batch that solves (9), and (iv) compute individual infection probabilities.

Algorithm to store and update the posterior. At every stage t, we need the posterior (5) in order to
evaluate and optimize utilities to select groups. This posterior is then updated by observing the results
from tests carried out at stage t, before moving to stage t+ 1. One way to proceed would be to store
the posterior as a 2n-dimensional vector, keeping track of the probability of each possible population
infection status vector, and update it using Bayes’ rule, given test results yt ∈ {0, 1}k for group Gt:

πt(x) ∝ πt−1(x)P(YGt = yt |X = x) ∝ π0(x)

t∏
i=1

P(YGi = yi |X = x) . (11)

While this approach is tractable for up to n ≈ 25 (leading to 225 ≈ 33 million probabilities to store),
it does not scale further. We instead use a SMC sampler [16] to approximate πt. This provides an
approximation by a cloud of weighted particles of the form π̂t =

∑N
i=1 ωiδxi , where N � 2n. We

follow closely the algorithmic approach outlined by Schäfer and Chopin [40, Algo. 2], with two
modifications: we sample initially from π0 rather than the uniform prior, and as t grows, use π̂t to
produce π̂t+1; we consider a few variants for the MCMC kernel used within SMC [40, Proc. 4],
including theirs, which all appear to provide similar results. We pick the modified Gibbs kernel for
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discrete spaces introduced by Liu [26], where we loop on the n coordinates of all particles, 4 times
by default at each kernel application (see §A.5 for algorithmic details and comparisons).

Algorithms to Evaluate Utilities. Given a functional Φ, Algo. 1 shows how to estimate the utility
UΦ (9) for a group G and posterior pmf π̂t =

∑N
i=1 ωiδxi

obtained at any time t through a SMC
sampler. The space complexity of Algo. 1 is O(N × max(2k, n)), where n is the number of
individuals, k is the number of groups allowed per stage, and N is the size of the support of pmf π̂t,
e.g. the number of particles. The time complexity is dictated by line 6, where we repeat 2k times
a call to the utility function Φ where π̂t has a support of size N in {0, 1}n. If this operation has
complexity C(N,n), then the time complexity of Algo. 1 isO(2kC(N,n)). For example, for utilities
based on marginals such as AUC, we need to compute the marginal first in O(Nn); then sort the
marginal itself in O(n ln(n)); then compute the AUC on each particle in O(Nn) in total, resulting in
C(N,n) = O(nmax(N, ln(n)). If we set Φ to be the neg-entropy, this results in C(N,n) = O(N),
but in that case we can use the equivalent formulation of entropy minimization as MI maximization
to derive a specific O(2k +N) algorithm (instead of O(2kN) with Algo. 1), as detailed in Algo. 3.

Algorithm 1: Compute utility of a set of groups given posterior UΦ(G, π̂t)

Input: π̂t(x) =
∑N
i=1 ωiδxi

(x) = P̂t(X = x); G = (g1, . . . ,gk) ∈ {0, 1}n×k a set of groups;
σ, s ∈ [0, 1]k the specificities and sensitivities of the test for each group in G;
Φ : [0, 1]N × {0, 1}n×N a utility function evaluated on a weighted cloud of N particles.

Output: The utility UΦ(G, π̂t)
1 Aij ← 1− σi + (σi + si − 1)[gi,xj ] for (i, j) ∈ JkK× JNK // P(Ygi = 1 |X = xj)

2 Bij ←
∏k
t=1A

bit
tj (1−Atj)1−bit for (i, j) ∈ J2kK× JNK, where bit is the t-th bit from the right in

the binary expansion of i // P(YG = i |X = xj)

3 Cij ← Bij × ωj for (i, j) ∈ J2kK× JNK // P̂t(YG = i , X = xj)

4 Di ←
∑N
j=1 Cij for i ∈ J2kK // P̂t(YG = i)

5 Eij ← Cij/Di for (i, j) ∈ J2kK× JNK // P̂t(X = xj |YG = i)

6 Fi ← Φ(Ei·,X) for i ∈ J2kK // Φ(P̂t(X |YG = i))

7 U ←
∑2k

i=1DiFi // EYG
Φ(π̂G

t )
8 return U

Algorithms to Maximize Utility. Taking for granted that we can evaluate UΦ(G, π̂t) given a
candidate batch G and posterior pmf π̂t using Algo. 3, the question of finding a batch G that
maximizes UΦ in (9) is a difficult discrete optimization problem, with costly evaluations. Any
standard algorithm for discrete optimization can in principle be used to find suboptimal solutions,
such as greedy forward/backward optimization, simulated annealing or genetic algorithms. We
implemented a greedy approach that adds incrementally groups one by one, to build up a batch. Each
group itself grows in a greedy manner, using standard forward/backward steps: we first greedily
add the best F individuals one by one (forward step), and then delete the B worst ones (backward
step) until we either stop improving utility, or reach the maximal group size nmax. In the case of
MI maximization, we detail a way to carry out such greedy optimization more efficiently than by
applying repeatedly Algo. 3 (in the appendix).

Algorithms for Marginal Inference and Decoding. At any point in the testing campaign, one
may want to compute the marginal probability for each individual to be infected, a step known as
decoding test results. This marginal may be used to make informed decisions at any stage of the
campaign, but could also be used to design new groups to test (to illustrate this, we propose in our
experiments to use the informative Dorfman (ID) procedure [30] after a first round of test has been
carried out, see §B). To estimate the marginal, we implemented two approaches: (i) marginalizing
the approximate posterior π̂t maintained by the SMC sampler (§A.5), which consists simply in
computing the “mean” particle in π̂t, or (ii) computing the marginal with a LBP algorithm [35], as
detailed in §A.4. The LBP is a fast and popular decoding algorithm in group testing [42, 3], which
is not, however, guaranteed to converge to the correct marginal. On the other hand, although the
SMC-based estimator may be inaccurate if the particle approximation of the posterior is poor, it does
not suffer from convergence issues. We show in experiments (see Fig. 1) that SMC outperforms
LBP decoding. More problematically, we find that LBP can display oscillatory behavior, notably for
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certain group testing strategies that re-test several times the same individuals. However, because LBP
is significantly faster, we propose a mixed approach, which tests whether LBP has converged within
a maximal number of iterations, and, if not, switches to a SMC. This strategy seems to be almost as
effective in our simulations to using a SMC by default, and we adopt it for all group testing strategies.

5 Simulations

Algorithm 2: Simulator to evaluate the performance of a group testing Policy
Input: horizon T ≥ 1, maximum number of tests per cycle k, maximum group size nmax.
Ground truth infection probability P0 of n patients on state space {0, 1}n.
Ground truth noise parameters σ, s ∈ [0, 1]nmax × [0, 1]nmax depending on group size.
Prior on infection probability P̂0 used by algorithms.
Prior on noise parameters σ̂, ŝ ∈ [0, 1]nmax × [0, 1]nmax used by algorithms.
Test(G, σ, s) returns col(G) noisy tests using σ, s by pooling samples according to G.
Policy(t, d, nmax,y

t,Gt, σ̂, ŝ, π̂t−1 or x̄t−1) calls t-th selector to produce up to d new groups of
size at most nmax. May use: past test results yt,Gt; priors σ̂, ŝ; posterior or marginal approx.
Sampler(yt,Gt, σ̂, ŝ, π̂t−1) produces N approx. weighted samples from Pt using new tests.
MarginalSampler(yt,Gt, σ̂, ŝ, π̂t−1) produces only approx. marginal distribution.
Output: ground-truth vector, T marginal predictions of infection.

1 xtruth ∼ P0 // sample the ground truth status

2 π̂0
N i.i.d.∼ P̂0 // sample N i.i.d particles from prior

3 Gtotest ← 0n×0 // initialize groups
4 for t← 1 to T do
5 if col(Gtotest) < k then // produce new groups if needed
6 Gadd ← Policy(t, k − col(Gtotest),yt−1,Gt−1, σ̂, ŝ, π̂t−1 or x̄t−1).
7 Gtotest ← [Gtotest,Gadd] // add groups to stack

8 r ← min(k, col(Gtotest)),Gt ← Gtotest
:r ,Gtotest ← Gtotest

r: // set new tests
9 yt ← Test (Gt, σ, s) // receive lab tests

10 π̂t ← Sampler(yt,Gt, π̂t−1) // sample particles using test results
11 x̄t ← MarginalSampler(yt,Gt, π̂t−1) // compute marginal using tests
12 return xtruth, (x̄1, . . . , x̄T ) // ground truths + marginal predictions

Policies: Ours and baselines. We call a selector any algorithm, adaptive or not, that is able to
choose groups at any stage, using possibly the knowledge of past tests. A group testing policy is a
sequence of group selectors to be used at each stage. In the group testing literature, it is common that a
policy sticks to a single selector throughout all stages. We propose here several new baseline policies:
some use a single selector throughout, some use different selectors. For instance, we consider policies
that may start with a non-adaptive selector in the first stage, followed next by an adaptive selector.

Our BOED selectors maximize, using greedy forward-3/backward-2 selection, either the mutual
information (G-MIMAX) or the expected AUC utility (G-AUCMAX). We consider them as single-
selector policies, and compare them to the following baseline policies. On the one hand, we
consider the standard 2-stage Dorfman policy [17], which first splits the population in groups of
size ≈ min(nmax, 1 + d1/√qe), and then tests all individuals in positive groups, and the multi-stage
Binary Dorfman policy that implements Hwang’s hierarchical binary splitting approach [21] instead
of the second stage of Dorfman’s strategy. On the other hand, we test two non-adaptive selectors
where groups are either uniformly Random (composed of g patients, where g is chosen so that the
probability of a test being positive is close to 1/2, which is asymptotically optimal in the absence
of noise [32]), or fixed using the predefined Origami M3 (OM3) assay matrix [23] containing 22
groups of maximal size 10 for 70 individuals, which was optimized to deal with an infection rate
of ≈ 5%. We consider the Random selector as a policy in itself, and consider 3 mixed policies: (i)
Random-ID, where a first batch of Random groups are formed, which is used to form a first guess
for the marginal distribution, which can be used in the second stage by a variant of Dorfmann’s
splitting known as Informative Dorfman (ID) [30], where the first uniform split of groups in the
Dorfman strategy is replaced by an optimized strategy; (ii) Origami-Random, which first tests
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Figure 1: Issues with LBP as a decoder are highlighted in these figures. The left plot reveals that
using LBP significantly degrades the performance of the Random policy, as measured by its average
sensitivity/specificity after 40 tests. In the right plot, we count the proportion of simulations in which,
at each given cycle (each cycle corresponds to k = 8 tests), the LBP marginal oscillates significantly,
in the sense that even after ` = 1000 iterations, the difference between two iterates is bigger, in at
least one coordinate, by more than 0.5, which is a significant contradiction for at least one individual.

the 22 groups of (OM3), and then switches to Random groups; (iii) Origami-ID, which switches
instead to an ID strategy, using the posterior marginal computed from observing tests from (OM3).
These strategies are described in more detail in §B.

Group testing simulations: algorithm and parameters. Each simulation runs for a predefined T
test cycles, during which we can carry out up to k tests simultaneously. We consider settings where
Tk < n. The testing simulator is described in Alg. 2 using the following notations: col(A) is the
number of columns of a matrix A; A:i, the first i columns of a matrix; Ai:, the matrix A stripped of
those i first columns. We use the following parameters in our simulations:

• population size n = 70; infection rate of q = 2% or 5% (see §C.1 for 10%); constant specificity
σ = 97% and sensitivity s = 85% (see §C.5 for results with varying sensitivity);
• k = 8 tests per cycle, horizon of T = 5 cycles (total 40 tests), maximal group size: nmax = 10.
• 5,000 simulation runs for each policy.

Decoder and discussion on LBP’s convergence. To define the MarginalSampler referred to in
Algo. 2, we considered two choices: LBP (§A.4) and the marginal of a posterior sample produced
from SMC (§4,§A.5). We compare their performance in Fig. 1, using the setup of Fig. 2 & 3, to
decode 40 tests generated with the Random policy. Fig. 1 (left) reveals that using the SMC marginal
as a decoder, rather than LBP, significantly improves performances (we observed similar results for
all other policies). However, because LBP is orders of magnitude faster than SMC, we propose a
practical compromise, using a hybrid approach: we run LBP and check whether its iterates have
stabilized after at most 1000 iterations. If the marginals produced on the two final successive iterations
differ by more than 2% on any coordinate, we conclude that LBP has not stabilized and is possibly
oscillating; in that case we run an SMC, and use its marginal instead. The performance of that
approach is comparable to that of SMC. Notice, in Fig. 1 (right), that the number of times LBP is
significantly unstable is far from negligible. We believe that LBP failures arise because of its inability
to handle contradictory tests due to noise, notably for small groups, as can for instance happen in the
Binary-Dorfman approach.

Performance in terms of sensitivity/specificity. In Fig. 2 we apply the same threshold on the
marginal sampler’s output x̄t (see Algo.2) at all steps, of all simulations, of all policies, to decide
which individuals are classified as positive (marginal above threshold) or negative (below). We record
the resulting sensitivity/specificity by comparing it to the corresponding xtruth. We then obtain 5,000
pairs policy and at each cycle on 5,000 simulations. For those simulations with entirely negative
ground-truth state vector, i.e. xtruth = 0, which happens regularly when q = 2%, the sensitivity
cannot be evaluated, and those simulations are therefore only used to record specificity. Although
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Figure 2: We provide in this plot average specificity/sensitivity for each policy, for two infection rates.
For each policy, and at each step t, we use its marginal approximation x̄t from Algo.2 and threshold
its coordinates at levels 3% and 10% respectively for 2% and 5% base infection rates, to make a binary
decision. Comparing it to the corresponding xtruth, we compute that simulation’s specificity/sensitivity,
and average them over 5000 simulations. The specificity/sensitivity of individual tests (requiring 70
tests) is plotted in red, and is significantly outperformed with our approaches.
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Figure 3: As in Figure 2 we report average specificity/sensitivity for various policies, but we focus
on the final cycle (t = 5) and vary the threshold used to make decisions, which produces a global
specificity/sensitivity curve for all 5,000 experiments.

we have considered previously the AUC of the marginal in an earlier version of this paper1, we
argue that computing average specificity/sensitivity for a fixed threshold results in a more realistic
performance assessment: If these policies were to be deployed, one would need to “ship” them set
with a threshold set beforehand. We report the dynamic progress of average specificity/sensitivity
as a function of t, here labelled next to markers as total tests carried out. In Figure 3, we plot the
average specificity/sensitivity of each policy, obtained this time by varying the threshold (labelled
next to markers) after 5 cycles of 8 tests(i.e. 40 in total). This recovers a “frontier” curve of average
sensitivity/specificity levels using all experiments (more plots in §C.2 at earlier cycles).

Conclusion. Our goal in this work was to maximize the efficiency of group testing in a noisy
adaptive setting. We proposed a general framework to do so using Bayesian optimal sequential
experimental design. By relying on a particle representation of the posterior, we formulate the
problem of designing groups as a combinatorial maximization problem, solved with a greedy forward-
backward approach. We have benchmarked our proposals against several baselines (some of our
own design), and have shown a substantial improvement in performance. Results obtained with
our G-MIMAX and G-AUCMAX approaches beat all other approaches by a wide margin. This

1https://arxiv.org/abs/2004.12508v1
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work suggests several directions for improvement: quality of posterior sampling, alternative utility
functions Φ, improvement of the combinatorial solver tasked to produce groups out of posterior
samples. Since our method currently scales exponentially with the number k of requested groups
(which we equate in this work with the number of tests available per cycle, for a pool of n patients),
an extension of our work that carries out resampling at each group optimization iteration might be
required for larger k.
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A Proofs and Algorithms

We provide in this section more details on the mathematics of our paper. We start in §A.1 with a
proof for Lemma 1. This in turn motivates the link we make between maximizing mutual information
and maximizing the expected neg-entropy of the conditional distribution of X given YG, which can
be evaluated more quickly than by applying directly Algo. 3 and even maximized more efficiently
using a greedy F/B algorithm as presented in §A.3. We conclude this section by providing in §A.4
the details of the message passing algorithm run to compute the LBP decoder, as well as, in §A.5,
details on the SMC implementation we have considered.

A.1 Proof of Lemma 1

Let us start with a single group g ∈ G. We use the fact that IP(X;Yg) can also be written as

IP(X;Yg) := HP(Yg)− EPX
[HP(Yg|X)] , (12)

and compute each term in turn. HP(Yg) can be computed easily from the law of X since, by (3),

P(Yg = 1) = EXP(Yg = 1 |X) = EX (1− σg + ρg[g,X]) = 1− σg + ρgfPX
(g) ,

from which we obtain
HP(Yg) = h (ρgfPX

(g) + 1− σg) . (13)
For the second term, we notice that, conditionally to X = x, Yg is a Bernoulli random variable whose
expectation only depends on [g,x], which itself can only take two values 0 and 1. By (2) we deduce:

HP(Yg |X = x) =

{
hsg if [g,x] = 1 ,

hσg
if [g,x] = 0 ,

which we can summarize as

HP(Yg |X = x) = hσg
+ γg[g,x] . (14)

We deduce that

EPX
[H(Yg|X)] = EPX

(
hσg + γg[g,X]

)
= hσg + γgfPX

(g) . (15)

Plugging (13) and (15) into (12) gives (7). Moving now to the case of a batch G = (g1, . . . ,gk) ∈ G∗,
we use the fact that the entries of YG are independent from each other given X to write, for any
x ∈ {0, 1}n, and using (14),

HP(YG |X = x) =

k∑
j=1

HP(Ygj
|X = x) =

k∑
j=1

(
hσgj

+ γgj [gj ,x]
)
.

As a result,

EPX
[H(YG |X)] =

k∑
j=1

(
hσgj

+ γgjfPX
(gj)

)
.

which gives (6).

A.2 Neg-Entropy and Mutual Information

We notice first that, using the identity that defines the mutual information in §3:

UMI(G, πt) :=IPt(X; YG) = HPt(YG)−HPt(YG|X) = HPt(YG)−
∑
x

πt(x)HP(YG|X = x)

=HPt
(X)−HPt

(X|YG) = HPt
(X)−HPt

(X|YG)

=HPt
(X)−

∑
y

πt(y)HPt
(X = x|YG = y) = HPt

(X) + EPt
[ΦNegEnt(π

G
t )]

where
ΦNegEnt(π̂) =

∑
i=1

ωi logωi , where π̂ =
∑

ωiδxi ,
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is the negative entropy utility. Since G has no influence on HPt(X) in the r.h.s of the last line above,
maximizing mutual information is equivalent to maximizing the expected neg-entropy of X when
conditioned on hypothetical test results for group G.

From the equality
IPt(X; YG) = HPt(YG)− EX[H(YG|X)] ,

we propose an algorithm that is able to directly evaluate the first term from the vector D and the
second term from the matrix A, with notations from Algo.1. Since YG is a product distribution
conditioned to X we have

H(YG|X = x) =

k∑
i=1

H(Ygi |X = x).

The resulting algorithm is shown in Algorithm 3. Compared to using Algorithm 1 with Φ = ΦNegEnt,
the computation of F in O(N × 2k) operations to compute 2k entropies over a space of cardinality
N in Algorithm 1, line 6, is replaced by the computation of H2 in O(N × k) (Algorithm 3, line 2)
and of H1 in O(2k) to compute a single entropy over a space of cardinality 2k (Algorithm 3, line 7).

Algorithm 3: Compute MI utility of a set of groups

Input: π̂t(x) =
∑N
i=1 ωiδxi

(x) = P̂t(X = x); G = (g1, . . . ,gk) ∈ {0, 1}n×k a set of groups;
σ, s ∈ [0, 1]k the specificities and sensitivities of the test for each group in G.

Output: The MI utility of the groups U(G) = MI(X; YG).
1 Lij ← [gi,xj ] for (i, j) ∈ JkK× JNK

2 h2 ←
∑k
i=1

[(∑N
j=1 ωjLij

)
(h(si)− h(σi)) + h(σi)

]
// EX [H(YG|X)]

3 Aij ← 1− σi + (σi + si − 1)Lij for (i, j) ∈ JkK× JNK // P(Ygi
= 1 |X = xj)

4 Bij ←
∏k
t=1A

bit
tj (1−Atj)1−bit for (i, j) ∈ J2kK× JNK, where bit is the t-th bit from the right in

the binary expansion of i // P(YG = i |X = xj)

5 Cij ← Bij × ωj for (i, j) ∈ J2kK× JNK // P(YG = i , X = xj)

6 Di ←
∑N
j=1 Cij for i ∈ J2kK // P(YG = i)

7 h1 ← −
∑2k

i=1Dj log(Dj) // H(YG)
8 return h1 − h2

A.3 Algorithm to Maximize MI

In this section we describe an algorithm to maximize the mutual information utility, subject to the
constraint that each group should have at most nmax individuals, and that the batch should contain
any number m ≤ k of groups. Simply put, we greedily create groups one by one, until we have m
groups. Once we have created groups Gj = (g1, . . . ,gj), we create a new group gj+1 by starting
from an empty group g = ∅ (line 3) and growing iteratively the group by selecting the individual that
adds the most mutual information

g← g ∪ {i} where i ∈ arg max
u

IP(X ; Y(Gj ,g∪{u})),

until either we stop making progress in terms of mutual information, or when the group has already
reached size nmax. We consider additionally a variant in which we do not only consider greedy
addition of individuals to form a group, but also removal, resulting in Forward-Backward iterations.
Algorithm 4 describes an efficient way to carry out such forward passes more efficiently than by
evaluating repeatedly Algorithm 3, because it leverages the fact that G is built sequentially, column
by column. We omit the backward pass which only consists in changing line 5 (by setting gω = 1
instead) and removing (rather than adding) ιu∗ from g in line 16. At each loop index in i (line 4),
having a number F of forward passes and B of backward passes, with F > B, requires executing the
body of the loop (lines 5 to 14) F times in forward mode, and B times in backward mode.

We use the following notations in Algorithm 4: small letters denote constants, small bold letters
denote vectors, bold capital letters are matrices and bold greek letters are 3D tensors.
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Algorithm 4: G-MIMAX: Optimize MI of m prospective group tests with greedy search

Input: π̂t(x) =
∑N
i=1 ωiδxi

(x) = P̂t(X = x)
Number of m groups to add, nmax upperbound on group size
ρi = σi + si − 1, γi = hsi − hσi

, i ∈ JnmaxK.
Output: Approximate maximizer G of U(G) = MI(X; YG).

1 G← 0n×0, P← 1n×1, h← 0
2 for j ← 1 to m do
3 g← 0n, f0 ← 0,p = 0N // initialize group, objective, positive in group

across particles indicator
4 for i← 1 to nmax do
5 ι← (w ∈ JnK : gw = 0), r ← |ι| // indices that can be added
6 Tuv ← xv[ιu] ∨ pv, (u, v) ∈ JrK× JNK // detect positive in candidates
7 h2

u ← hσi
+ γi

∑
v Tuv ωv + h, u ∈ JrK // conditional entropies

8 Γu,v,0 ← 1− σi + ρTuv, Γu,v,1 ← σi − ρTuv, u, v), (u, v) ∈ JrK× JNK
// probabilities of 2 possible test results, tensorized

9 Ξu,v,b ← Γu,v,0Pv,b, Πu,v,b+2j−1 ← Γu,v,1Pv,b, (u, v, b) ∈ JrK× JNK× J2j−1K
// probability tensor across all possible candidate groups ×
particles × 2j hypothetical test results across j groups.

10 Qu,b ←
∑
v Πu,v,b ωv, (u, b) ∈ JrK× J2j−1K // marginalization / particles

11 h1 ← −
∑
u,bQu,b log(Qu,b) // unconditional entropy

12 m← h1 − h2 // MI objective function
13 u∗ ← argmaxu mu, fi ←mu∗ ,P

new
v,b = Πu∗,v,b // greedy selection

14 hnew ← h2
u∗ // record conditional entropies of all tests so far

15 if fi > fi−1 then
16 g = g ∪ {ιu∗} // incorporate candidate
17 p = Tu∗,· // update vector of positive in group across particles
18 else
19 G = [G,g] // incorporate g
20 P = Pnew, h = hnew // update probability & entropy after adding g
21 break

As an alternative to greedy approaches, we have also considered stochastic optimization approaches
based on simulated annealing, with a constant temperature. These approaches can also be combined
with our greedy algorithm (or any algorithm), by choosing its output as initialization, rather than a
random set of groups. A simple implementation did not yield significant improvement in performance
for a comparable running time.

A.4 Approximate posterior estimation by loopy belief propagation

A standard way to compute an approximation of the posterior marginals is to run loopy belief
propagation (LBP) until convergence. Here we detail the LBP equations for our setting. Given n
individuals and m tests performed with groups gi, . . . ,gm ∈ G, LBP alternates passing messages
µi→j = (µi→j(0), µi→j(1)) ∈ R2 from individuals i ∈ JnK to groups j ∈ JmK with i ∈ gj , and
µ̃j→i = (µ̃j→i(0), µ̃j→i(1)) ∈ R2 from groups j with i ∈ gj to individuals i, respectively.

Adding a superscript (t) to clarify the messages sent at the t-th iteration of LBP, the messages from
an individual i ∈ JnK to a group j ∈ JmK with i ∈ gj follow the standard equations:


µ

(t+1)
i→j (0) = (1− qi)

∏
j′ 6=j : i∈gj′

µ̃
(t)
j′→i(0) ,

µ
(t+1)
i→j (1) = qi

∏
j′ 6=j : i∈gj′

µ̃
(t)
j′→i(1) .

(16)
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The messages from a group j ∈ JmK to an individual i ∈ JnK with i ∈ gj depend on the result of the
test Ygj : if Ygj = 0 (negative test), then

µ̃
(t)
j→i(0) = σgj

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0) + (1− sgj

)

( ∏
i′ 6=i : i′∈gj

(µ
(t)
i′→j(0) + µ

(t)
i′→j(1))−

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0)

)
= (1− sgj

)
∏

i′ 6=i : i′∈gj

(µ
(t)
i′→j(0) + µ

(t)
i′→j(1)) + (σgj

+ sgj
− 1)

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0) ,

µ̃
(t)
j→i(1) = (1− sgj )

∏
i′ 6=i : i′∈gj

(µ
(t)
i′→j(0) + µ

(t)
i′→j(1)) ,

(17)
while if Ygj = 1 (positive test), then

µ̃
(t)
j→i(0) = (1− σgj

)
∏

i′ 6=i : i′∈gj

µ
(t)
i′→j(0) + sgj

( ∏
i′ 6=i : i′∈gj

(µ
(t)
i′→j(0) + µ

(t)
i′→j(1))−

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0)

)
= sgj

∏
i′ 6=i : i′∈gj

(µ
(t)
i′→j(0) + µ

(t)
i′→j(1))− (σgj

+ sgj
− 1)

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0) ,

µ̃
(t)
j→i(1) = sgj

∏
i′ 6=i : i′∈gj

(µ
(t)
i′→j(0) + µ

(t)
i′→j(1)) .

(18)
To simplify these equations let us introduce some notations:

e−µi =
qi

1− qi
for i ∈ JnK ,

eγ
0
j =

σgj + sgj − 1

1− sgj

for j ∈ JmK ,

eγ
1
j =

σgj + sgj − 1

sgj

for j ∈ JmK .

Furthermore, let us make the change of variables, for any (i, j, t) ∈ JnK× JmK× N,

α
(t)
ij = ln

(
µ

(t)
i→j(0)

µ
(t)
i→j(0) + µ

(t)
i→j(1)

)
,

β
(t)
ij = ln

(
µ̃

(t)
j→i(0)

µ̃
(t)
j→i(1)

)
.

(19)

Then (16) can be rewritten as:

α
(t)
ij = − ln

1 +
qi

1− qi

∏
j′ 6=j : i∈gj′

µ̃
(t)
j′→i(1)

µ̃
(t)
j′→i(0)


= − ln

(
1 + e

−µi−
∑

j′ 6=j : i∈g
j′
β
(t)

ij′

)
= − ln

(
1 + e−µi−β̄(t)

i +β
(t)
ij

)
,

(20)

where

β̄
(t)
i =

∑
j : i∈gj

β
(t)
ij .

Similarly, denoting

ᾱ
(t)
j =

∑
i : i∈gj

α
(t)
ij ,
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we can rewrite (17) and (18) as follows: if Ygj = 0,

β
(t)
ij = ln

1 +
σgj + sgj − 1

1− sgj

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0)

µ
(t)
i′→j(0) + µ

(t)
i′→j(1)


= ln

(
1 + e

γ0
j +

∑
i′ 6=i : i′∈gj

α
(t)

i′j

)
= ln

(
1 + eγ

0
j +ᾱ

(t)
j −α

(t)
ij ,
)
,

(21)

and if Ygj
= 1,

β
(t)
ij = ln

1−
σgj

+ sgj
− 1

sgj

∏
i′ 6=i : i′∈gj

µ
(t)
i′→j(0)

µ
(t)
i′→j(0) + µ

(t)
i′→j(1)


= ln

(
1− eγ

1
j +

∑
i′ 6=i : i′∈gj

α
(t)

i′j

)
= ln

(
1− eγ

1
j +ᾱ

(t)
j −α

(t)
ij ,
)
.

(22)

After convergence of the messages (denoted as t =∞), we estimate the posterior marginal of the i-th
individual as

ln
PLBP(Di = 1 |Yg1 , . . . , Ygm)

PLBP(Di = 0 |Yg1
, . . . , Ygm

)
= ln

qi
1− qi

∏
j : i∈gj

µ̃
(∞)
j→i(1)

µ̃
(∞)
j→i(0)

= −µi −
∑

j : i∈gj

β
(∞)
ij ,

(23)

that is,

PLBP(Di = 1 |Yg1
, . . . , Ygm

) =
1

1 + e
µi+

∑
j : i∈gj

β
(∞)
ij

. (24)

A.5 Approximate posterior estimation by sequential Monte Carlo sampler

We detail here the SMC sampler algorithm used to provide a Monte Carlo approximation

π̂t =

N∑
i=1

ωtiδxt
i
,

of πt given an approximation π̂t−1 =
∑N
i=1 ω

t−1
i δxt−1

i
of πt−1. The main idea is to introduce

intermediate pmfs πγkt of the form

πγt (x) ∝ πt−1(x){P(YGt = yt |X = x)}γ , (25)

bridging smoothly πt−1 to πt using a real sequence γk increasing from 0 to 1 so that π0
t = πt−1 and

π1
t = πt. We then approximate sequentially these pmfs using a combination of importance sampling,

resampling and MCMC steps [16, 40]. This method is detailed in Algorithm 5.

Practically given an approximation of π̂γk−1

t =
∑N
i=1 ωiδxi

of πγk−1

t , an importance sampling
approximation of πγkt is given by π̂γkt =

∑N
i=1 ω

′
iδxi where

ω′i ∝ ωi {P(YGt = yt |X = xi)}γk−γk−1 ,

N∑
i=1

ω′i = 1, (26)

and a proxy measuring the “quality” of this approximation is the Effective Sample Size (ESS):

ESS =
1

N
∑N
i=1(ω′i)

2
∈ [1/N, 1]. (27)
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Simply put, the higher the ESS, the better the approximation. For equally weighted particles, one has
ESS = 1. We select here γk such that the ESS is equal to a pre-specified value in [1/N, 1) (set to 0.9
in our experiments) and, if this yields γk > 1, we set γk = 1 . Practically, this is achieved using a
bisection search as described in [40, Proc.2]. Once we have determined γk, we then compute the new
importance weights using (26), and then use a resampling procedure to replicate particles with high
weights and discard particles with low weights; i.e. we approximate π̂γkt by

π̃γkt =
1

N

N∑
i=1

niδxi
=

1

N

N∑
i=1

δx̃i
. (28)

Each particle xi is copied ni ∈ JNK times with
∑N
i=1 ni = N . This can be achieved by sampling N

times from x̃i ∼ π̂γkt so that (n1, ..., nN ) follow a multinomial distribution. However, we use here
instead the systematic resampling scheme described in [40, Proc.3] which is faster to implement and
enjoys better theoretical properties.

To improve the particle approximation (28) of πγkt , the particles x̃i are then evolved according to a
MCMC kernel of invariant pmf πγkt . The simplest scheme consists in using the Gibbs sampler [20]
which cycles through the n components of x ∈ {0, 1}n

PG(X′ = x′|X = x) =

n∏
j=1

πγkt (x′:j−1, x
′
j ,xj+1:)

πγkt (x′:j−1, 0,xj+1:) + πγkt (x′:j−1, 1,xj+1:)
, (29)

where x′:0 = ∅, x′:j−1 = (x′1, ..., x
′
j−1) for j ≥ 1, x:k+1 = ∅, xj+1: = (xj+1, ..., xk) for j < k. We

used in the paper a modified variant of that Gibbs sampler proposed in [26], i.e.

PMG(X′ = x′|X = x) =

n∏
j=1

{αj(x′:j−1,xj:)δ¬xj
(x′j) + (1− αj(x′:j−1,xj:))δxj

(x′j)}, (30)

for

αj(x
′
:j−1,xj:) = min

(
1,
πγkt (x′:j−1,¬xj ,xj+1:)

πγkt (x′:j−1, xj ,xj+1:)

)
. (31)

This boils down to proposing to flip sequentially each coordinate j, this flip being accepted with
probability αj(x′:j−1,xj:).

We also tried the independent Metropolis-Hastings sampler described in [40] that uses all the particles
to build a proposal on {0, 1}n. We iterate these steps - schedule calculation, importance sampling,
resampling and MCMC moves - until γk = 1.

Algorithm 5: Sampler(yt,G, π̂t−1) returns N approximate samples from Pt given yt and π̂t−1.

Input: Approximation π̂t−1 =
∑N
i=1 ω

t−1
i δxt−1

i
of πt−1

Output: Approximation π̂t =
∑N
i=1 ω

t
iδxt

i
of πt

1 ω ← ωt−1,X← Xt−1.
2 γ ← AdaptiveSchedule(0,ω,X,yt). // determine first γ
3 ω ← ImportanceWeights(γ,ω,X). // compute importance weights
4 while γ < 1 do
5 X̃← Resample(ω,X). // discard/multiply particles with low/high weights
6 ω ← 1N/N .
7 X← MCMC(γ, X̃,yt). // MCMC moves targeting πγt
8 γold ← γ.
9 γ ← AdaptiveSchedule(γold,ω,X,y

t). // determine next γ
10 ω ← ImportanceWeights(γ − γold,ω,X). // compute importance weights
11 ωt ← ω,Xt ← X.
12 return π̂t =

∑N
i=1 ω

t
iδxt

i
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B Policies and group selectors

We provide in this section more details on the various baselines we have considered in §5 in the main
body of the paper.

B.1 Group Selectors

We start with selectors that require no knowledge other than the base infection rate; introduce the
informative Dorfman procedure that builds on marginal information; and conclude with our selectors,
G-MIMAX and G-AUCMAX. All selectors are constrained by a maximal size for groups nmax.
• Dorfman Splitting (D). It splits all n patients into subgroups of size ≈ min(nmax, 1 + d1/√qe).
• Split only positives (SplitPos). The second stage of Dorfman tests, focusing exclusively on those
groups that tested positive after (D). (SplitPos:0) tests individually all samples that have appeared in
a positive group; (SplitPos:2) uses Hwang’s hierarchical binary splitting approach [1972].
• Mézard and Toninelli (MT). It selects randomly groups of the same size g across all n possible
patients. Given a prior q, the group is chosen to get an acceptance probability of 1/2, yielding
g = min(nmax, log((sg− 1/2)/ρg)/ log(1− q)). [32] proves that in the absence of noise this choice
is asymptotically optimal.
• Origami fixed design (OM3). We also consider predefined groups, as enumerated in the Origami
M3 assay matrix [23] of size 70× 22, with 22 groups whose size is equal to or smaller than 10. This
matrix was proposed with a deterministic decoder that operates assuming an infection rate lower than
≈ 5%, in a noiseless setting. We therefore expect that assay to be the most useful when q ≤ 5%.
• Informative Dorfman (ID). Given results from the first exploitable wave of tests, we plug the
marginal distribution produced by a sampler in the informative Dorfman rule [30], a generalization to
a noisy setting of an approach proposed by [22]. The rule proceeds by sorting patients by increasing
marginal infection probability, and group them with groups that are initially large (to clear large
subsets of unlikely infected patients) to small (to test individuals likelier to be infected in smaller
groups). More precisely, given a sorted list of individuals with increasing infection probability
p = (p1, . . . , pn), [30] propose in their pool specific optimal Dorfman (PSOD) algorithm to group
together the first c∗ individuals, where c∗ is defined as

c∗ = argminc
1

c

(
1 + 1c>1c

(
s+ (1− s− σ)

c∏
u=1

(1− pu)

))
, (32)

remove them from the queue and proceed until all individuals are grouped. We constrain c to be
smaller than nmax. In this work, because the infection prior is uniform, we first run a first wave of
tests (using either Random or Origami) and use the resulting marginal as an estimate for p. When
appropriate, we also use group size specific sensitivites and specificities in (32).
• Greedy Maximization of Mutual Information (G-MIMAX) and AUC (G-AUCMAX). We
optimize the MI and AUC utilities using k groups as described in Algorithm 1. The greedy approach
for G-MIMAX is detailed in Algo. 4, G-AUCMAX uses calls to Algo. 1 along with a greedy
forward/backward solver. We use 3 Forward steps and 2 Backward steps in all our experiments. We
have experiemnted with a larger number of forward / backward steps, but we find that the resulting
computational overhead is not worth the small variation in performance that is obtained.

B.2 Policies

We consider the following policies, all composed by one or at most two group selectors.

• Dorfman: starts with Dorfman splitting first (D) followed by (SplitPos:0)
• Binary Dorfman: starts with Dorfman splitting first (D) followed repeatedly by (SplitPos:2).
• Random : generates random groups at each stage with the (MT) selector.
• Random-ID : starts with a random group (MT), follows with (ID).
• Origami-ID: uses (OM3) for 22 tests, and then switches to (ID).
• Origami-Random: uses (OM3) for 22 tests, and then switches to (ID).
• G-MIMAX and G-AUCMAX: optimize first utilities on a sample with N = 104 particles from
the prior, and then from the posterior distribution using a SMC sampler with the same size N .

All policies are decoded using the same decoded, a hybrid rule that runs an LBP, checks if it has
converged (tolerance of 2% for any coordinate) and, if not, runs a SMC (see discussion in §5).
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Figure 4: Using the same setup as in Fig. 3 and 2, we report results for an infection base rate of
q = 10%. The red hexagon depicts the sensitivity/specificity of 70 individual tests.

C Additional Experiments

We provide in this section many more results that validate further the good performance of our
approaches and illustrate their robustness.

• 10% infection rate: we list in §C.1 new plots, comparable to those already included in the
main body of the paper, for a higher infection prevalence prior of q = q̂ = 10%.

• Dynamics of testing performance: other plots are listed in §C.2 to provide a more detailed
assessment of the performance of each policy as the number of tests that is revealed grows.

• Robustness to Mis-specification: we list plots in §C.3 in which we use different values
for q, s (parameters used by the simulator) and q̂, ŝ (parameters used by the policies to
produce groups and marginal decoders to interpret them). Obviously some policies are more
sensitive to these gaps: For instance, Dorfman splitting does not consider sensitivities to
form groups (but uses them to decode test results). Although one may have expected a
substantial decrease in performance of our proposals G-AUCMAX and G-MIMAX, neither
seems to materialize, as their performance stays clearly above that of all other baselines.

• k = 1 and single test steps: In §C.4 we report fine grained results for G-MIMAX and other
baselines that show the evolution of the performance of this method in the most favorable
setting on paper, that in which they are free to choose a new test based on the result of the
previous test. While this setup would be unrealistic, because it would involve waiting hours
required to output a single test result before choosing a new group, it showcases the speed at
which our method reaches better performance than other baselines.

• More challenging setup: n = 96 and varying sg: we end this section with a last setup
that is more challenging (n = 96 is larger, and so one may worry about the ability of
our posteriors to cover a space of size 296) and which also factors a degraded sensitivity
as a function of group size. In that setting, we still observe a substantial gap between
G-MIMAX and the other techniques. Additionally, we show thatN (the number of particles)
and F/B (number of forward/backward iterations) also seem to have a small impact on the
performance of G-MIMAX.

C.1 q = 10% infection rates

We provide in Fig. 4 additional results for a base infection rate of 10%.

C.2 Specificity / Sensitivity curves as function of cycles

We provide in Fig. 5 additional plots that complement 3, displaying how the specificity/sensitivity
frontier evolves as the number of tests grows, for each of the policies we considered. We propose a
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Figure 5: Using the same setup as in Fig. 3, we report results for 3 and 4 testing cycles (corresponding
therefore to 24 and 32 tests carried out in total). Note that, since the Origami assay only considers 22
tests,the slight difference in performance between Origami-ID and Origami-Random that arises on
the left plots is only due to 2 tests, carried out using ID or randomly.

more detailed view of that dynamic evoluation for each policy taken individually for all three base
infection rates, in Fig. 6, 7 and 8.

C.3 Robustness to misspecification

We study in this section robustness to misspecification of the policies we considered. Since all
policies rely on a marginal decoder, their specificity / sensitivity hinges on the fact that the infection
rate q and testing device’s noise parameters s, σ both match with those used by the marginal decoder.
We quantify how that performance varies under misspecification by considering the following
perturbations: we use the setup from the right plot in Fig. 3, namely q = 5%, s = 85%, σ = 97%,

20



82% 85% 88% 90% 92% 95% 98% 100%
specificity

0%

20%

40%

60%

80%

se
ns

iti
vi

ty
0.030.08

0.150.25

0.03

0.080.15

0.25

0.03

0.080.15
0.25

0.03

0.080.15
0.25

0.03

0.080.15
0.25

Binary Dorfman Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

82% 85% 88% 90% 92% 95% 98% 100%
specificity

0%

20%

40%

60%

80%

se
ns

iti
vi

ty

0.030.08

0.150.25

0.03
0.08

0.150.25

0.03
0.08

0.150.25

0.03
0.080.150.25

0.03
0.080.150.25

Dorfman Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

88% 90% 92% 94% 96% 98% 100%
specificity

20%

40%

60%

80%

100%

se
ns

iti
vi

ty 0.03
0.08

0.15
0.25

0.03

0.08
0.15

0.25

0.03 0.08 0.150.25

0.03 0.080.150.25
0.030.080.150.25

Origami-Random Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

88% 90% 92% 94% 96% 98% 100%
specificity

20%

40%

60%

80%

100%

se
ns

iti
vi

ty 0.03
0.08

0.15
0.25

0.03

0.08
0.15

0.25

0.03 0.08
0.150.25

0.03 0.080.150.25

0.030.080.150.25
Origami-ID Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

90% 92% 94% 96% 98% 100%
specificity

20%

40%

60%

80%

100%

se
ns

iti
vi

ty 0.03

0.08

0.15

0.25

0.03

0.08
0.15

0.25

0.03
0.08 0.15

0.25

0.03 0.080.150.25

0.03 0.080.150.25
Random Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

88% 90% 92% 94% 96% 98% 100%
specificity

20%

40%

60%

80%

100%

se
ns

iti
vi

ty 0.03

0.08

0.15

0.25

0.03
0.08

0.15

0.25

0.03
0.08

0.15

0.25

0.03 0.08
0.15

0.25

0.030.080.15
0.25

Random-ID Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

82% 85% 88% 90% 92% 95% 98% 100%
specificity

0%

20%

40%

60%

80%

100%

se
ns

iti
vi

ty

0.03

0.08

0.150.25

0.03
0.08

0.15
0.25

0.03 0.080.150.25
0.030.080.150.250.030.080.150.25

G-MIMAX Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

88% 90% 92% 94% 96% 98% 100%
specificity

20%

40%

60%

80%

100%

se
ns

iti
vi

ty

0.03
0.08

0.15
0.25

0.03
0.08

0.15
0.25

0.03 0.080.150.25

0.030.080.150.250.030.080.150.25
G-AUCMAX Sens/Spec progression. Infection Rate 2%

cycle 1
cycle 2
cycle 3
cycle 4
cycle 5

70

Figure 6: Using the same setup as in Fig. 3, we report dynamic results for each policy, as the number
of tests increases, for q = 2%. The number of tests is equal to k (here 8) times the cycle number.
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Figure 7: Using the same setup as in Fig. 3, we report dynamic results for each policy, as the number
of tests increases, for q = 5%. The number of tests is equal to k (here 8) times the cycle number.
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Figure 8: Using the same setup as in Fig. 3, we report dynamic results for each policy, as the number
of tests increases, for q = 10%. The number of tests is equal to k (here 8) times the cycle number.
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to generate the ground truth in our simulations, as well as to execute tests. On the other hand, the
policies (along with their decoders), will be tested under 8 additional scenarios: q̂ ∈ {3%, 5%, 8%}
and ŝ ∈ {78%, 85%, 92%}. Naturally, when q̂ = 5% and ŝ = 85% we fall back on the well-specified
scenario. To facilitate comparison, our two proposals (G-AUCMAX) and (G-MIMAX) are displayed

C.4 Experiments with k = 1

We consider now in Fig. 10 a setup where k = 1. In that setting, we can have a fine grained picture
of what each of the considered policies does when using the latest test result to produce a new group.
The adaptiveness of (G-MIMAX) is showed case here, as we see the method maintain an acceptable
specificity to highlight progressively positives while making few mistakes. This setting is particularly
relevant to compare in an idealized setting our approach to the performance of Dorfman baselines.

C.5 Varying sensitivity

We explore an additional experimental setup that is a bit more ambitious in scale, since n = 96,
nmax = 12, k = 10 and T = 4. In that setting, we assume correct specification, with slightly different
infection rates than those used before, q ∈ {2%, 4%, 7%} and a more reliable specificity σ = 0.99,
but factor in a decreasing sensitivity as the group size increases, sg = (91− g)%. We also consider
in that setup various iterations for our greedy forward-backward approach, and N ∈ {10000, 20000}
total particles.
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Figure 9: Robustness to misspecification of two crucial parameters: prior infection rates and sensitivity
q̂ and ŝ, compared to ground truth parameters used to generate ground truth and tests q = 5% and
s = 85%. Specificity is well specified in all experiments, i.e. σ = σ̂ = 97%. Note that scales are
relative to each plot, and highlight the robustness of our methods (bottom) to misspecification.
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Figure 10: Experiments in which only one test is carried out at a time before recomputing the marginal
and deciding on the next test. Here F = 5, B = 4 for G-MIMAX (with N = 10000) and all methods
rely on a LBP decoder only. 26
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Figure 11: Experiments with a sensitivity that decreases with group size. Here we also show the
relatively minor impact for the G-MIMAX strategy of choosing parameters such as N and F/B. The
red hexagonal dot stands for the sensisitivy/specificity of a single test, knowing that the sensitivity for
groups decreases by 1% every time the group size is increased by 1.
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