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Self-Supervised Learning of Audio Representations
from Permutations with Differentiable Ranking
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Abstract—Self-supervised pre-training using so-called “pre-
text” tasks has recently shown impressive performance across
a wide range of modalities. In this work, we advance self-
supervised learning from permutations, by pre-training a model
to reorder shuffled parts of the spectrogram of an audio signal,
to improve downstream classification performance. We make two
main contributions. First, we overcome the main challenges of
integrating permutation inversions into an end-to-end training
scheme, using recent advances in differentiable ranking. This
was heretofore sidestepped by casting the reordering task as
classification, fundamentally reducing the space of permutations
that can be exploited. Our experiments validate that learning
from all possible permutations improves the quality of the pre-
trained representations over using a limited, fixed set. Second,
we show that inverting permutations is a meaningful pretext task
for learning audio representations in an unsupervised fashion.
In particular, we improve instrument classification and pitch
estimation of musical notes by reordering spectrogram patches
in the time-frequency space.

Index Terms—audio, pre-training, permutations, self-
supervised learning

I. INTRODUCTION

Pre-training representations in an unsupervised way, with
subsequent fine-tuning on labelled data, has become the stan-
dard to extend the performance of deep architectures to appli-
cations where annotations are scarce, such as understanding
medical images [1], recognizing speech from under-resourced
languages [2], [3], or solving specific language inference tasks
[4]. Among unsupervised training schemes, self-supervised
learning focuses on designing a proxy training objective, that
requires no annotation, such that the representations inci-
dentally learned will generalize well to the task of interest,
limiting the amount of labeled data needed for fine-tuning.
Such “pretext” tasks, a term coined by Doersch et al. [5],
include learning to colorize an artificially gray-scaled image
[6], inpainting removed patches [7], multi-modal data com-
parisons [8], or recognizing by what angle an original image
was rotated [9]. Other approaches for self-supervision include
classification of original images after data augmentation [10]
and clustering [11]. Many of these methods, however, such as
gray-scale and rotation, cannot be applied to spectrograms for
use in audio processing. There has, also been recent work
using contrastive learning for audio representation learning
[12] which requires the raw waveform and log-mel spectro-
gram. Transformers have also been used [13] for unsupervised
learning on audio. Our method is beneficial because of the
simple architecture, relatively easy change to the loss, and
semantically meaningful pre-text task.
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In this work, we consider the pretext task of reordering
patches of the spectrogram for an audio signal, first proposed
for images in [14], the analogue of solving a jigsaw puzzle.
In this setting, we first split the input into patches and
shuffle them by applying a random permutation. We train
a neural network to predict which permutation was applied,
taking the shuffled patches as inputs. After pre-training with
this pretext task, we use the inner representations learned
by the neural network as input features to a low-capacity
model (see Figure 1) trained for supervised classification (the
downstream task). Recent work has used transfer learning
on audio to great effect [15], using self-supervision on the
latent vectors, while our work explores the use of a pre-
text task directly on the input data. Permutations provide a
promising avenue for this type of self-supervised learning, as
they are conceptually general enough to be applied across a
large range of modalities, unlike colorization [6] or rotations
[9] that are specific to images. The encouraging results of [14]
when transferring learned image features for object detection
and image retrieval inspire us to advance this method a step
forward. However, including permutations into an end-to-end
differentiable pipeline is challenging, as permutations are a
discontinuous operation. This issue is circumvented in [14]
casting this problem as classification over a fixed subset of
permutations. Given that the number of possible permutations
of n patches is n!, this approach cannot scale to the full set of
permutations, even when n is moderately small. Alternatively,
[16] use Sinkhorn normalization to produce doubly stochastic
matrices as approximations of the true permutation matrix.
While this method can be integrated into an end-to-end
pipeline, each forward pass through the model relies on an
iterative Sinkhorn algorithm, of which each iteration has a
cost O(n2) and which requires choosing a stopping criterion.

In this work, we leverage recent advances in differentiable
ranking [17], [18] to integrate permutations into end-to-end
neural training. This allows us to solve the permutation in-
version task for the entire set of permutations, removing a
bottleneck that was heretofore sidestepped in manners that
limits downstream performance. Moreover, we demonstrate for
the first time the effectiveness of permutations as a pretext
task on audio with minimal modality-specific adjustments.
In particular, we improve instrument classification and pitch
estimation of musical notes by learning to reorder spectrogram
frames, over the time and frequency axes.

The rest of the paper is organized as follows. In Section II
we present the problem formulation and methods. In Sec-
tion III we demonstrate the effectiveness of our system on
instrument classification and pitch estimation of musical notes.
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Fig. 1: Our framework. [Bottom] Patches are generated and permuted on the fly. The network is pre-trained on the associated
permutation. Dotted layers indicate weight sharing across input patches. Embeddings used for downstream tasks are extracted
by removing the network’s last few layers. [Top] Downstream training is achieved by freezing the weights of the network
up to the embeddings (in blue), and training different shallow classifiers for a variety of tasks. Further, permutations as a
self-supervised technique can handle a variety of slicing methods with no significant changes to the network architecture.

II. METHODS

A. General methodology

In this section, we present a self-supervised pretext task that
predicts the permutation applied to patches of an input. We do
so in a manner that allows to use all possible permutations as
targets during training. This pretext task is performed for pre-
training and the internal representation learned by the pretext
neural network can be transferred and used on secondary
downstream tasks – see Figure 1.

During pre-training, for each audio sequence, we split its
spectrogram into n patches. These patches can either be
vertical (stacks of time frames), horizontal (stacks of frequency
bands), or on both axes (stacks of time-frequency bins). We
then permute these patches randomly, and stack them in a
tensor Xi of dimension n×d (see Figure 1), which is paired to
the applied permutation as a label yi of size n (see Section II-B
for details on permutation encoding).

We pre-train the weights w of a neural network to invert
this permutation, using a differentiable ranking operator y∗ε .
This operator, and other details of pre-training are described
in Section II-B; the network and data-processing are described
in Section II-C. After pre-training, the network weights are
used to generate embeddings at an intermediate layer. These
representations can be used in a downstream task, as input to
a low-capacity classifier (see Figure 1).

We mostly evaluate our methods by improvements in down-
stream classification. However, the reordering task can be of
interest in itself, as in learning-to-rank problems [19], and we
also report generalization performance in this task.

B. Differentiable ranking methodology

Our methodology for representation learning relies on the
ability to incorporate ordering or ranking operations in an

end-to-end differentiable pipeline. This is achieved by using a
convenient encoding of the permutations of n objects in Rn,
and differentiable operators that approximate ranking.

For each permutation, the label yi is a vector of ranks,
or relative order, of the elements (e.g. y = (0, 1, 2, 3) for
the identity permutation). For the model prediction, the last
two layers consist of: a vector of score values θw(X) ∈ Rn,
and network outputs fw(X) = y∗ε (θw(X)) ∈ Rn, using
differentiable ranking operators y∗ε .

These operations map any vector of n values to a point in
the convex hull of permutation encodings in dimension n (e.g.
(0.1, 0.9, 2.2, 2.8) over 4 elements), akin to a softmax operator
in a classification setting. We consider here two differentiable
ranking operations, either using stochastic perturbations [17]
or regularization [18]. In any case, embedding the permuta-
tions in this manner (rather than e.g. permutation matrices
or n! classes) puts more emphasis on the relative position of
the elements, and enables us to penalize less smaller index
differences.

These tools ensure that our model is end-to-end differen-
tiable, and enables to use all permutations in training. This is
unlike the models of [14] and [20], where reordering is reduced
to classification, assigning a set of L permutations to one-hot
vectors in RL. This approach is obviously limited: representing
all the permutations requires in principle n! classes, which is
quickly not manageable, even for small values of n.

Pre-training the network parameters w requires a loss func-
tion between y∗ε (θ) and y. For the version of y∗ε (θ) based
on stochastic perturbations, we use the associated Fenchel–
Young loss (“Perturbed F-Y” in empirical results) [21], that
acts directly on θ = θw(X) written here as LFY(θ; y). Its
gradients, given by ∇θLFY(θ; y) = y∗ε (θ) − y, are easy to
compute. For the regularized version of y∗ε (θ) [18], we use



3

‖y∗ε (θ)− y‖2/2. (“Fast Soft Ranking” in empirical results).
We opt for these two losses for their good theoretical proper-

ties and O(n log n) complexity. Other choices [16], [22]–[26]
are also possible, potentially with higher computational cost,
or regions with zero gradient.

C. Implementation and architecture

a) Data-processing: When constructing the self-
supervised task, we slice inputs in patches. This slicing
is controlled by two variables nx and ny , determining
respectively the number of columns and rows used. In [14],
9 square patches are used for images. On spectrograms, this
choice is conceptually richer as using nx = 1 means slicing
frequency bands, while using ny = 1 means slicing along
the time axis. Using both nx 6= 1 and ny 6= 1 allows slicing
along both axes, see Figure 1 for an illustration.

b) Pre-training task: For the reordering pretext task, we
use a Context Free Network (CFN) from [14]. This network
uses an AlexNet [27] backbone which processes each patch
individually while sharing weights across all patches as shown
in Figure 1. By processing each patch independently, but with
shared weights, the network cannot rely on global structure.
After the shared backbone, the patches are passed together
through two fully connected layers. The output layer represents
the predicted ranks of the input permutation.

c) Downstream task: In the downstream tasks we use
3-layer multi-layer perceptrons (MLP) trained on embeddings
extracted at the first aggregate fully connected layer of the
pretext network (whose weights are frozen during this part).
The MLP’s output layer is task-dependent. For a regression
downstream task, the output of the MLP is a single scalar and
the downstream model is trained to minimize mean-squared
error. For classification, the output of the MLP is a softmax
over the class logits, and we train the downstream model by
minimizing the cross-entropy loss.

III. EXPERIMENTS

We demonstrate the effectiveness of permutation-based pre-
training as measured by the test accuracy in instrument classi-
fication and pitch estimation tasks. All experiments are carried
out in Tensorflow [28] and run on a single P100 GPU. We also
report the performance on the pre-training task using partial
ranks, the proportion of patches ranked in the correct position.

A. Experimental setup.

The NSynth dataset [29] offers about 300,000 audio sam-
ples of musical notes, each with a unique pitch, timbre,
and envelope recorded from 1,006 different instruments. The
recordings, sampled at 16kHz, are 4 seconds long and can
be used for 3 downstream classification tasks: predicting the
instrument itself (1,006 classes) the instrument family (11
classes) and predicting the pitch of the note (128 values).
We formulate pitch estimation as a regression task and report
the mean squared error (MSE). The input representation is
a log-compressed spectrogram, computed over 25ms with a
10ms stride and 513 bins. The 2D structure of the spectrogram
allows us to use a 2D convolutional neural network, as is done
with images. We train our CFN with an AlexNet backbone on

Task Random Fixed Fast Perturbed MSE
Embedding Permutation Soft Ranking F-Y

Instr. Family (ACC) 0.46 ±0.01 0.75 ±0.02 0.84 ±0.02 0.85 ±0.03 0.79 ±0.02

Instr. Label (ACC) 0.35 ±0.04 0.70 ±0.03 0.72 ±0.03 0.76 ±0.04 0.71 ±0.03

Pitch (MSE) 258.76 ±3 144.48 ±18 133.85 ±19 124.6 ±14 156.08 ±21

Partial Ranks Accuracy - - 0.57 ±0.0 0.58 ±0.0 0.51 ±0.0

TABLE I: Performance on three downstream tasks with 1000
downstream data points taken from NSynth. ACC stands for
accuracy, and MSE for mean squared error.

the pre-training task of predicting applied permutations for
1000 epochs, over mini batches of size 32 and with an Adam
optimizer [30] with a learning rate of 10−6. We then evaluate
the downstream generalization performance over the 3 NSynth
tasks, by replacing the last layers of the network by a task
specific 3-layer MLP and replacing the random permutation
by the identity.

We compare the different variants of our method (number
and nature of the patches) with 2 baseline alternatives: i) train-
ing the downstream head on an untrained encoder (Random
Embedding) and ii) solving the same pre-training task but
using instead a finite set of 100 permutations as proposed by
[14] (Fixed Permutation). We also compare different losses to
train the permutation pretext task: a) cross entropy (XE) when
learning over 100 permutations, b) MSE loss (MSE), c) soft
ranking via perturbations (Perturbed F-Y) and d) soft ranking
(Fast Soft Ranking).

B. Empirical results.

First, we compare the different methods across several
downstream data regimes and report the results in Figure 2.
Here, all pre-training models slice the spectrogram over the
frequency axis as it gives the best performance (see III-C for an
ablation study). Additionally, the experiments in this figure use
10 patches for all methods and 1000 permutations for the XE
method. We observe that in the low data regime our method
strongly outperforms an end-to-end fully supervised model.
Moreover, this advantage is maintained when increasing the
number of training examples in the downstream tasks. We
also observe that pretraining is particularly impactful for pitch
estimation which aligns with results of [31].

We report in Table I the results for the the three downstream
tasks, using 1000 training examples. Those experiments are
run using 10 frequency bands, which corresponds to 10!
permutations. In this context, casting permutation inversion as
a classification problem is limited to exploiting only a small
proportion of possible permutations, as it would otherwise
amount to 3.6M classes. On the other hand, our method
scales very well in this setting. We first observe that random
embeddings perform poorly but do represent a good baseline
to be compared to, as the difference in performance with other
methods illustrates what is gained from pre-training. Second,
the baseline is significantly outperformed when using a fixed
set of permutation and a classification loss, as in [14]. We
then observe that even with a mean squared error loss, the
performance on the downstream task is comparable or better
than the fixed permutation method and we show that using a
ranking loss further increases the performance. Furthermore,
Fig.3 shows the effect of the number of frequency bands on
the downstream performance. As the number of permutations



4

Inst rum ent  Fam ily
 Inst rum ent  Label
 Pitch


#  of data points
 #  of data points
 #  of data points


Fig. 2: Performance of our permutation-based pretraining over 3 audio tasks when varying the number of data points in the
downstream task. Higher is better for Instrument Family and Instrument Label while lower is better in Pitch prediction.
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Fig. 3: Performance on the downstream tasks, as a function of the number of frequency patches used for pre-training.

Task Frequency Time Time-Frequency
Instr. Family (ACC) 0.82 ±0.003 0.79 ±0.004 0.73 ±0.003

Instr. Label (ACC) 0.75 ±0.01 0.68 ±0.002 0.45 ±0.01

Pitch (MSE) 136.68 ±12.63 206.11 ±7.32 137.81 ±13.02

TABLE II: Slicing biases on Nsynth downstream tasks.

grows, the overall performance over the downstream task
increases, providing better representations, up to 9-10 patches.
These results tend to confirm that i) permutation is an interest-
ing pretext task, ii) considering all possible permutation helps
building better representations and iii) the use of a ranking
loss is the right choice of loss for such tasks. We then report
in the last row of Table I performance in the pretext task.
Good performance on the downstream task is often connected
to good performance on the pretext task. Here, we measure
performance by the ability of the CFN network to reorder the
shuffled inputs, reporting the proportion of items ranked in the
correct position.

C. Time-frequency structure and permutations

Unlike images, the horizontal and vertical dimensions of
a spectrogram are semantically different, respectively repre-
senting time and frequency. While [14] only exploited square
patches, experimenting with audio allows exploring permuta-
tions over frequency bands (horizontal patches), time frames
(vertical patches) or square time-frequency patches, and com-
paring the resulting downstream performance. Table II reports

a comparison between these three settings. Overall, shuffling
along the frequency axis is the best pre-training strategy. These
results illustrate a specificity of the dataset: our inputs are
single notes, many of them having an harmonic structure. In
this context, learning the relation between frequency bands is
meaningful both to recognize which instrument is playing, as
well as which note (pitch) is being played. This also explains
the poor performance of slicing along the time axis. Pitch
is a time-independent characteristic, so the time structure is
not relevant for this task. Moreover, musical notes have an
easily identifiable time structure (fast attack and slow decay),
which may make the task of reordering time frames trivial.
We hypothesize that signals with a richer, non-stationary time
structure, such as speech, would benefit more from shuffling
time frames.

IV. CONCLUSION

We present a general pre-training method that uses permuta-
tions to learn high-quality representations from spectrograms,
and improves the downstream performance of audio classifi-
cation and regression tasks on musical notes. We demonstrate
that our method outperforms previous permutation learning
schemes by incorporating fully differentiable ranking as a pre-
text loss, enabling us to take advantage of all n! permutations,
instead of a small fixed set. In particular, we show significant
improvements in low data regimes.
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