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Abstract

We consider the problem associated to recovering the block structure of an Ising model

given independent observations on the binary hypercube. This new model, called the Ising

blockmodel, is a perturbation of the mean �eld approximation of the Ising model known

as the Curie–Weiss model: the sites are partitioned into two blocks of equal size and the

interaction between those of the same block is stronger than across blocks, to account

for more order within each block. We study probabilistic, statistical and computational

aspects of this model in the high-dimensional case when the number of sites may be much

larger than the sample size.
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1 Introduction

The past decades have witnessed an explosion of the amount of data collected. Along with

this expansion comes the promise of a better understanding of an observed phenomenon by

extracting relevant information from this data. Larger datasets not only call for faster meth-

ods to process them but also lead us to completely rethink the way data should be modeled.

Speci�cally, these new datasets arise as the agglomeration of a multitude of basic entities and,

rather than their average behavior, most of the information is contained in their interactions.

Graphical models (a.k.a Markov Random Fields) have proved to be a very useful tool to turn

raw data into networks that are amenable to clustering or community detection. Speci�cally,

given random variables σ1, . . . , σp, the goal is to output a graph on p nodes, one for each

variable, where the edges encode conditional independence between said variables (Lauritzen,

1996). Graphical models have been successfully employed in a variety of applications such as

image analysis (Besag, 1986), natural language processing (Manning and Schütze, 1999) and

genetics (Lauritzen and Sheehan, 2003; Sebastiani et al., 2005) for example.

Originally introduced in the context of statistical physics to explain the observed behavior

of various magnetic materials (Ising, 1925), the Ising Model is a graphical model for binary ran-

dom variables σ1, . . . , σp ∈ {−1, 1}, hereafter called spins. Despite its simplicity, this model

has been e�ective at capturing a large class of physical systems. More recently, this model was

proposed to model social interactions such as political a�nities, where σj may represent the

vote of U.S. senator j on a random bill in Banerjee et al. (2008) (see also the data used in Dia-

conis et al. (2008) for the U.S. House of Representatives). In this context, much e�ort has been

devoted to estimating the underlying structure of the graphical model (Bresler, 2015; Bresler

et al., 2008; Ravikumar et al., 2010) under sparsity assumptions. At the same time, the theoret-

ical side of social network analysis has witnessed a lot of activity around the estimation and

reconstruction of stochastic blockmodels (Holland et al., 1983) as a simple but e�cient way to

capture the notion of communities in social networks. These random graph models assume an

underlying partition of the nodes, leading to inhomogeneous connection probabilities between

nodes. Given the realization of such a graph, the goal is to recover the partition of the nodes.

Already in the context of a balanced partition into two communities, this model has revealed

interesting threshold phenomena (Massoulié, 2014; Mossel et al., 2013, 2015).

In this work, we combine the notions of stochastic blockmodel and that of graphical model

by assuming that we observe independent copies of a vector σ = (σ1, . . . , σp) ∈ {−1, 1}p
distributed according to an Ising model with a block structure analogous to the one arising in

the stochastic blockmodel.

Speci�cally, assume that p ≥ 2 is an even integer and let S ⊂ [p] := {1, . . . , p} be a subset

of size |S| = m = p/2. For any partition (S, S̄), where S̄ = [p] \ S denotes the complement

of S, write i ∼ j if (i, j) ∈ S2 ∪ S̄2
and i � j if (i, j) ∈ [p]2 \ (S2 ∪ S̄2). Fix β, α ∈ IR and let

σ ∈ {−1, 1}p have density fS,α,β with respect to the counting measure on {−1, 1}p given by

fS,α,β(σ) =
1

Zα,β
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i�j

σiσj

]
, (1.1)
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where

ZS,α,β :=
∑

σ∈{−1,1}p
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i�j

σiσj

]
(1.2)

is a normalizing constant traditionally called partition function. Let IPS,α,β denote the proba-

bility distribution over {−1, 1}p that has density fS,α,β with respect to the counting measure

on {−1, 1}p. We call this model the Ising Blockmodel (IBM). We write simply fα,β and IPα,β to

emphasize the dependency on α, β and simply IPS to emphasize the dependency on S.

When α = β > 0, the model (1.1) is the mean �eld approximation of the (ferromagnetic)

Ising model and is called the Curie-Weiss model (without external �eld). It can be readily seen

from (1.1) that vectors σ ∈ {−1, 1}p that present a lot of pairs (i, j) with opposite spins (high

energy con�gurations), i.e., σiσj < 0, receive less probability than vectors where most of

the spins agree (low energy con�gurations). There are however much fewer vectors with low

energy in the discrete hypercube and this tension between energy and entropy is responsible

for phase transitions in such systems.

When positive, the parameter β > 0 is called inverse temperature and it controls the

strength of interactions, and therefore, the weight given to the energy term. When β → 0, the

entropy term dominates and IPβ,β tends to the uniform density over {−1, 1}p. When β →∞,

IPβ,0 → .5δ1 + .5δ−1, where δx denotes the Dirac point mass at x and 1 = (1, . . . , 1) ∈
{−1, 1}p denotes the all-ones vector of dimension p, the energy term dominates and it a�ects

the global behavior of the system as follows.

Let µCW = σ>1/p denote the magnetization of σ. When µCW ' 0, then σ has a balanced

numbers of positive and negative spins (paramagnetic behavior) and when |µCW| � 0, then

σ has a large proportion of spins with a given sign (ferromagnetic behavior). When p is large

enough, the Curie-Weiss model is known to obey a phase-transition from ferromagnetic to

paramagnetic behavior when the temperature crosses a threshold (see subsection A for details).

This striking result indicates that when the temperature decreases (β increases), the model

changes from that of a disordered system (no preferred inclination towards−1 or +1) to that of

an ordered system (a majority of the spins agree to the same sign). This behavior is interesting

in the context of modeling social interactions and indicates that if the strength of interactions

is large enough (β > 1) then a partial consensus may be found. Formally, the Curie-Weiss

model may also be de�ned in the anti-ferromagnetic case β < 0—we abusively call it “inverse

temperature" in this case also—to model the fact that negative interactions are encouraged. For

such choices of β, the distribution is concentrated around balanced con�gurations σ that have

magnetization close to 0. Moreover, as β → −∞, IPβ,β converges to the uniform distribution

on con�gurations with zero magnetization (assuming that p is even so that such con�gurations

exist for simplicity). As a result, the anti-ferromagnic case arises when no consensus may be

found and and the spins are evenly split between positive and negative.

In reality though, a collective behavior may be fragmented into communities and the IBM

is meant to re�ect this structure. Speci�cally, since β > α, the strength β of interactions within

the blocks S and S̄ is larger than that across blocks S and S̄. As will become clear from our

analysis, the case where α < 0 presents interesting con�gurations whereby the two blocs S
and S̄ have polarized behaviors, that is opposite magnetization in each block.

The rest of this paper is organized as follows. In Section 2, we study the probability dis-
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tributions IPα,β , for α < β and exhibit phase transitions. Next, in Section 3, we consider the

problem of recovering the partition S, S̄ from n iid samples from IPα,β .

Finally note that the size p of the system has to be large enough to observe interesting

phenomena. In this paper we are also concerned with such high dimensional systems and our

results will be valid for large enough p, potentially much larger than the number of obser-

vations. In particular, we often consider asymptotic statements as p → ∞. However, in the

statistical applications of Section 3 we are interested in understanding the scaling of the num-

ber of observations as a function of p. To that end, we keep track of the �rst order terms in p
and only let higher order terms vanish when convenient.

2 Probabilistic analysis of the Ising blockmodel

We will see in Section 3 that given σ(1), . . . , σ(n)
that are independent copies of σ ∼ IPα,β , the

sample covariance matrix Σ̂ de�ned by

Σ̂ =
1

n

n∑
t=1

σ(t)σ(t)> , (2.1)

is a su�cient statistic for S. From basic concentration results (see Section 3), it can be shown

that this matrix concentrates around the true covariance matrix Σ = IEα,β
[
σσ>

]
where IEα,β

denotes the expectation associated to IPα,β . Unfortunately, computing Σ directly is quite chal-

lenging. Instead, we show that when p is large enough, then IPα,β is spiked around speci�c

values, which, in turn, give us a handle of quantities of the form IEα,β[ϕ(σ)] for some test

function ϕ. Beyond our statistical task, we show phase transitions that are interesting from a

probabilistic point of view.

2.1 Free energy

LetHibm

α,β denote the IBM Hamiltonian (or “energy") de�ned on {−1, 1}p by

Hibm

α,β(σ) = −
( β

2p

∑
i∼j

σiσj +
α

2p

∑
i�j

σiσj
)
, (2.2)

so that

fα,β(σ) =
e−H

ibm

α,β(σ)

Zα,β

Akin to the Curie-Weiss model, the density fα,β puts uniform weights on con�gurations that

have the same magnetization structure. To make this statement precise, for any A ⊂ [p] de-

�ne 1A ∈ {0, 1}p to be the indicator vector of A and let µA = σ>1A/|A| denote the local

magnetization of σ on the set A. It follows from elementary computations that

Hibm

α,β(σ) = −m
4

(
2αµSµS̄ + β(µ2

S + µ2
S̄)
)
, (2.3)
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where we recall that m = p/2. Moreover, the number of con�gurations σ with local magneti-

zations µ = (µS , µS̄) ∈ [−1, 1]2 is given by(
m

µS+1
2 m

)(
m

µS̄+1
2 m

)
This quantity can be approximated using Stirling’s formula (see Lemma B.2): For any µ ∈
(1 + ε, 1− ε), there exists two positive constants c, c̄ such that

c√
m
e−mh

(
µ+1

2

)
≤
(

m
µ+1

2 m

)
≤ c̄√

m
emh

(
µ+1

2

)
, ∀m ≥ 1

where h : [0, 1] → IR is the binary entropy function de�ned by h(0) = h(1) = 1 and for any

s ∈ (0, 1) by

h(s) = −s log(s)− (1− s) log(1− s) .
Thus, IBM induces a marginal distribution on the local magnetizations that has density

`m
mZα,β

exp
[
− m

4
g(µS , µS̄)

]
, (2.4)

where c2 ≤ `m ≤ c̄2
and

g(µS , µS̄) = −2αµSµS̄ − β(µ2
S + µ2

S̄)− 4h
(µS + 1

2

)
− 4h

(µS̄ + 1

2

)
. (2.5)

Note that the support of this density is implicitly the set of possible values for pairs local

magnetizations of vectors in {−1, 1}p, that is the setM2
, where

M2 :=
{s>1[m]

m
, s ∈ {−1, 1}m

}
⊂ [−1, 1]2 . (2.6)

We call the function g the free energy of the Ising blockmodel and its structure of minima

is known to control the behavior of the system. Indeed, g∗ denote the minimum value of

g over M2
. It follows from (2.4) that any local magnetization (µS , µS̄) ∈ M2

such that

g(µS , µS̄) > g∗ has a probability exponentially smaller than any magnetization that minimizes

g overM2
. Intuitively, this results in a distribution that is concentrated around its modes. Be-

fore quantifying this e�ect, we study the minima, known as ground states of the free energy g,

when de�ned over the continuum [−1, 1]2.

2.2 Ground states

Recall that when α = β, the block structure vanishes and the IBM reduces to the well-known

Curie-Weiss model. We gather in Appendix A useful facts about the Curie-Weiss model that

we use in the rest of this section.

The following proposition characterizes the ground states of the Ising blockmodel. For any

p ∈ [1,∞], we denote by ‖ · ‖p the `p norm of IR2
and by Bp = {x ∈ IR2, : ‖x‖p ≤ 1} the unit

ball with respect to that norm.
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Proposition 2.1. For any b ∈ IR, let ±x̃(b) ∈ (−1, 1), x̃(b) ≥ 0 denote the ground state(s) of

the Curie-Weiss model with inverse temperature b. The free energy gα,β of the IBM de�ned in (2.5)

has the following minima:

If β + |α| ≤ 2, then gα,β has a unique minimum at (0, 0).
If β + |α| > 2, then three cases arise:

1. If α = 0, then gα,β has four minima at (±x̃(β/2),±x̃(β/2)),

2. If α > 0, gα,β has two minima at s̃ = (x̃(β+α
2 ), x̃(β+α

2 )) and −s̃,

3. If α < 0, gα,β has two minima at s̃ = (x̃(β−α2 ),−x̃(β−α2 )) and −s̃.

In particular, for all values of the parametersα and β, all ground states (x̃, ỹ) satisfy x̃2 = ỹ2 < 1.

This result is illustrated in Figure 1, composed of contour plots of the free energy gα,β on the

square [−1, 1]2, for several values of the parameters. The di�erent regions are also represented

in Figure 2 below.

α = −6 α = −2.5 α = −0.5 α = 0

α = −4 α = −0.9 α = −0.2 α = 0

Figure 1: Contour plots of the values of the free energy gα,β with higher values in red and lower values

in blue, corresponding to ground states. Top row : Several choices for α < 0, and β = 1.5 < 2. Bottom

row : Several choices for α < 0, and β = 2.5 > 2. The same plots with α > 0 can be obtained by a 90◦

rotation, by symmetry of the function.

Proof. Throughout this proof, for any b ∈ IR, we denote by gcwb (x), x ∈ [−1, 1], the free

energy of the Curie-Weiss model with inverse temperature b. We write g := gα,β for simplicity

to denote the free energy of the IBM.
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Note that

g(x, y) = gcwβ+α
2

(x) + gcwβ+α
2

(y) + α(x− y)2 . (2.7)

We split our analysis according to the sign of α. Note �rst that if α = 0, we have

g(x, y) = gcwβ
2

(x) + gcwβ
2

(y) .

It yields that:

• If β ≤ 2, then gcwβ
2

has a unique local minimum at x = 0 which implies that g has a unique

minimum at (0, 0)

• If β > 2, then gcwβ
2

has exactly two minima at x̃(β/2) and−x̃(β/2), where x̃(β/2) ∈ (−1, 1).

It implies that g has four minima at (±x̃(β/2),±x̃(β/2)).

Next, if α > 0, in view of (2.7) we have

g(x, y) ≥ gcwβ+α
2

(x) + gcwβ+α
2

(y)

with equality i� x = y. It follows that:

• If α+ β ≤ 2, then g has a unique minimum at (0, 0)

• Ifα+β > 2, then g has two minima onA at (x̃(β+α
2 ), x̃(β+α

2 )) and at (−x̃(β+α
2 ),−x̃(β+α

2 )).

Finally, note that (x− y)2 ≤ 2x2 + 2y2
with equality i� x = −y. Thus, if α < 0, in view

of (2.7) we have

g(x, y) ≥ gcwβ−α
2

(x) + gcwβ−α
2

(y) (2.8)

with equality i� x = −y. It implies that

• If β − α ≤ 2, then g has a unique minimum at (0, 0)

• If β − α > 2, then g has two minima at (x̃(β−α2 ),−x̃(β−α2 )) and at

(−x̃(β−α2 ), x̃(β−α2 )).

Using the localization of the ground states from Lemma A.1, we also get the following local

and global behaviors of the free energy of the IBM around the ground states.

Lemma 2.2. Assume that β + |α| 6= 2. Denote by (x̃, ỹ) any ground state of Ising blockmodel

and recall that x̃2 = ỹ2
. Then the following holds:

1. The Hessian Hα,β of gα,β at (x̃, ỹ) is given by

Hα,β = −2

(
β α
α β

)
+

4

1− x̃2
I2 .

In particular Hα,β has eigenvalues 2(α− β) + 4/(1− x̃2) and

−2(α+ β) + 4/(1− x̃2) associated with eigenvectors (1,−1) and (1, 1) respectively.
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2. There exists positive constants δ = δ(β + |α|), κ2 = κ2(β + |α|) such that the following

holds. For any (x, y) ∈ (−1, 1)2
, we have

g(x, y) ≥ g(x̃, ỹ) +
κ2

2

(
‖(x, y)− (x̃, ỹ)‖∞ ∧ δ

)2
. (2.9)

Moreover,

If β + |α| > 2, we can take δ = e−(β+|α|)β + |α| − 2

4(β + |α|) and

κ2 = 1− 2

β + |α| .

If β + |α| < 2, we can take δ =
√

(2− (β + |α|))/6 and

κ2 = 2− (β + |α|).

Proof. Elementary calculus yields directly that

Hα,β =

(
−2β + 4

1−x̃2 −2α

−2α −2β + 4
1−ỹ2

)
.

Moreover, it follows from Proposition 2.1 that all ground states satisfy x̃2 = ỹ2
. This completes

the proof of the �rst point.

We now turn to the proof of the second point and split the analysis into four cases: (i)

α ≥ 0 and β + α < 2, (ii) α ≥ 0 and β + α > 2, (iii) α < 0 and β − α < 2, (iv) α < 0 and

β − α > 2.

Case (i): α > 0 and β + α < 2. Recall that in this case, g has a unique minimum at (0, 0).

Therefore, in view of (2.7) and Lemma A.1, we have

g(x, y)− g(0, 0) = gcwβ+|α|
2

(x)− gcwβ+|α|
2

(0) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(0) + α(x− y)2

≥ 1

2

(
2− (β + |α|)

)[
(|x− 0| ∧ ε′)2 + (|y − 0| ∧ ε′)2

]
≥ 1

2

(
2− (β + |α|)

)(
‖(x, y)− (0, 0)‖∞ ∧ ε′

)2
.

where ε′ =
√

(2− (β + |α|))/6 which concludes this case.

Case (ii): α > 0 and β + α > 2. Recall that in this case, g has two minima denoted generically

by (x̃, ỹ) where x̃ = ỹ. Therefore, in view of (2.7) and Lemma A.1, we have

g(x, y)− g(x̃, ỹ) = gcwβ+|α|
2

(x)− gcwβ+|α|
2

(x̃) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(ỹ) + α(x− y)2

≥ 1

2

(
1− 2

β + |α|
)[

(|x− 0| ∧ ε)2 + (|y − 0| ∧ ε)2
]

≥ 1

2

(
1− 2

β + |α|
)(
‖(x, y)− (0, 0)‖∞ ∧ ε

)2
.
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where ε = e−(β+|α|)β + |α| − 2

4(β + |α|) which concludes this case.

Case (iii): α < 0 and β − α < 2. Recall that in this case, g has a unique minimum at (0, 0).

Moreover, in view of (2.8) and Lemma A.1, it holds

g(x, y)− g(0, 0) ≥ gcwβ+|α|
2

(x)− gcwβ+α
2

(0) + gcwβ+|α|
2

(y)− gcwβ+α
2

(0)

≥ gcwβ+|α|
2

(x)− gcwβ+|α|
2

(0) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(0)

≥ 1

2

(
2− (β + |α|)

)(
‖(x, y)− (0, 0)‖∞ ∧ ε′

)2
.

where in the second inequality, we used the fact that

gcwβ+α
2

(0) = gcwβ+|α|
2

(0) = −4h(1/2) ,

and we concluded as in Case (i).

Case (iv): α < 0 and β −α > 2. Recall that in this case, g has two minima denoted generically

by (x̃, ỹ) where x̃ = −ỹ. Therefore, in view of (2.7) and (2.8), we have

g(x, y)− g(x̃, ỹ) ≥ gcwβ+|α|
2

(x)− gcwβ+α
2

(x̃) + gcwβ+|α|
2

(y)− gcwβ+α
2

(−x̃)− 4αx̃2 .

Next, observe that from the de�nition (A.1) of the free energy in the Curie-Weiss model, we

have

−gcwβ+α
2

(x̃)− gcwβ+α
2

(−x̃)− 4αx̃2 = −gcwβ+|α|
2

(x̃)− gcwβ+|α|
2

(−x̃) .

The above two displays yield

g(x, y)− g(x̃, ỹ) ≥ gcwβ+|α|
2

(x)− gcwβ+|α|
2

(x̃) + gcwβ+|α|
2

(y)− gcwβ+|α|
2

(−x̃)

≥ 1

2

(
1− 2

β + |α|
)(
‖(x, y)− (0, 0)‖∞ ∧ ε

)2
.

where we concluded as in Case (ii).

2.3 Concentration

As mentioned above, quantities of the form IEα,β[ϕ(σ)] cannot in general be computed ex-

plicitly in the IBM. Fortunately, it will be su�cient for us to compute quantities of the form

IEα,β[ϕ(µ)], where we recall that µ = (µS , µS̄) denotes the pair of local magnetizations of a

random con�guration σ ∈ {−1, 1}p drawn according to IPα,β . While exact computation is

still a hard problem, these quantities can be be well approximated using the fact that IPα,β is

highly concentrated around its ground states for large enough p.

To leverage concentration, we need to consider the “large m" (or equivalently “large p")

asymptotic framework. As a result, it will be convenient to write for two sequences am, bm
that am 'm bm if a = (1 + om(1))bm.

Our main result hinges on the following proposition that compares the distribution of µ =
(µS , µS̄) ∈ [−1, 1] to a certain mixture of Gaussians that are centered at the ground states.
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Theorem 2.3. Let ϕ : [−1, 1]2 → [0, 1] be any nonnegative bounded continuous test function.

Denote by s̃ any ground state and assume that there exists positive constants C, γ, for which
IE
[
ϕ
(
s̃+ 2√

m
H−1/2Z

)]
≥ Cm−γ where Z ∼ N2(0, I2) and H = Hα,β denotes the Hessian of

the free energy gα,β at s̃. Then

IEα,β[ϕ(µ)] 'm
1

|G|
∑
s̃∈G

IE
[
ϕ(s̃+

2√
m
H−1/2Z)

]
.

where G ⊂ {(±x̃,±x̃)} denotes the set of ground states of the IBM.

Proof. Recall thatM2
de�ned in (2.6) denotes the set of possible values for pairs of local mag-

netization and observe that

IEα,β[ϕ(µ)] =
1

Zα,β

∑
µ∈M2

ϕ(µ)zm(µ) ,

where

zm(µ) := exp
(
−m

4

(
−2αµSµS̄ − β(µ2

S + µ2
S̄)
))( m

µS+1
2 m

)(
m

µS̄+1
2 m

)
(2.10)

We split the local magnetization µ according to their `2 distance to the closest ground state.

Let G ⊂ [0, 1]2 denote the set of ground states and �x δ ··= (ρ/κ)
√

(logm)/m, where ρ > 0
is a constant to be chosen later and κ is de�ned in Lemma 2.2. For any ground state s̃ ∈ G,

de�ne Vs̃ to be the neighborhood of s̃ de�ned by

Vs̃ =
{
µ ∈M2 : ‖µ− s̃‖∞ ≤ δ

}
,

where δ > 0 is also de�ned in Lemma 2.2. Moreover, de�ne

V =
⋃
s̃∈G
Vs̃ ,

and assume that m is large enough so that (i) the above union is a disjoint one and (ii), there

exists a constant C > 0 depending on α and β such that for any (x, y) ∈ V , we have ||x| −
1| ∧ ||y| − 1| ≥ C > 0. Denote by g∗α,β the value of the free energy at any of the ground states.

We �rst treat the magnetizations outside V . Using Lemma 2.2 together with Lemma B.1,

we get

0 ≤ exp
(m

4
g∗α,β

)∑
µ/∈V

ϕ(µ)zm(µ) ≤ exp
(m

4
g∗α,β

)∑
µ/∈V

exp
(
−m

4
gα,β(µ)

)
≤ m2 exp

(
− m

4

κ2δ2

2

)
≤ m2− ρ

2

2 = om(m−γ) , (2.11)

for ρ > 4
√

8γ.

9



Next assume that µ ∈ V . Our starting point is the following approximation, that follows

from Lemma B.2: for any µ ∈ V ,

zm(µ) =
1

πm

exp
(
−m

4 gα,β(µS , µS̄)
)√

(1− µ2
S)(1− µ2

S̄
)

(1 + om(1)) , (2.12)

De�ne V ′ = Vs̃ − {s̃}. A Taylor expansion around s̃ gives for nay u ∈ V ′,

gα,β(s̃+ u) = gα,β(s̃) +
1

2
u>Hu+O(δ3).

where H = Hα,β denotes the Hessian of gα,β at the ground state s̃. The above two displays

yield

exp
(m

4
g∗α,β

) ∑
µ∈Vs̃

ϕ(µ)zm(µ)

= exp
(m

4
g∗α,β

) ∑
u∈V ′

ϕ(s̃+ u)zm(s̃+ u)

'm
1

πm(1− x̃2)

∑
u∈V ′

ϕ(s̃+ u) exp
(
− m

8
u>Hu

)
'm

m

π(1− x̃2)

∫
δB∞

ϕ(s̃+ x) exp
(
− m

8
x>Hx

)
dx

=
1

π(1− x̃2)

1√
detH

∫
‖H−

1
2 z‖∞≤ δ

√
m

2

ϕ
(
s̃+

2√
m
H−1/2z

)
exp

(
− ‖z‖2

2

)
dz

'm
1

1− x̃2

2√
detH

(
IE
[
ϕ
(
s̃+

2√
m
H−1/2Z

)]
− Tm

)
.

where Z ∼ N2(0, I2) and

Tm =

∫
z : z>H−1z≥mδ2

2

ϕ
(
s̃+

2√
m
H−1/2z

)
exp

(
− ‖z‖2

2

)
dz

Here, the third equality replaces the sum by a Riemann integral and in the last one we use the

following facts: (i) the set of vectors z satisfying ‖H− 1
2 z‖∞ ≤ 1 contains a Euclidean ball of

positive radius r(α, β) and (ii) δ
√
m → ∞. Next, observe that since ϕ takes values in [0, 1],

we have

0 ≤ Tm ≤ 2πIP(Z>HZ ≥ m/2)

≤ 2πIP
(
‖Z‖2 − 2 ≥ m

2λmax(H)
− 2
)

≤ 2π
√
e exp

(
− m

8λmax(H)

)
= o(m−γ) (2.13)

for m ≥ 8λmax(H) and where we used Lemma B.3.
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Since the same calculation holds for all ground states in G, and because the sets Vs̃, s̃ ∈ G
are disjoint, we get that

exp
(m

4
g∗α,β

)∑
µ∈V

ϕ(µ)zm(µ) 'm
1

1− x̃2

2√
detH

∑
s̃∈G

IE
[
ϕ
(
s̃+

2√
m
H−1/2Z

)]
.

Together with (2.11), the above display yields

∑
µ∈M2

ϕ(µ)zm(µ) 'm
2e−

m
4
g∗α,β

(1− x̃2)
√

detH

∑
s̃∈G

IE
[
ϕ(s̃+

2√
m
H−1/2Z)

]
,

In particular, this expression yields for ϕ ≡ 1,

Zα,β 'm
2|G|e−m4 g∗α,β

(1− x̃2)
√

detH
.

The above two displays yield the desired result.

2.4 Covariance

The covariance matrix Σ = IEα,β[σσ>] captures the block structure of IBM and thus plays a

major role in the statistical applications of Section 3. Moreover, the coe�cients of Σ can be

expressed explicitely in terms of the local magnetization µS and µS̄ .

Lemma 2.4. Let Σ = IEα,β[σσ>] denote the covariance matrix of a random con�guration σ ∼
IPα,β . For any i 6= j ∈ [p], it holds

∆ := Σij =
m

2(m− 1)
IE[µ2

S + µ2
S̄ ]− 1

m− 1
if i ∼ j

Ω := Σij = IE[µSµS̄ ] if i � j .

Proof. In this proof, we rely on symmetry of the problem: all the spins σi in a given block, S
or S̄ have the same marginal distribution. Fix i 6= j.

If i ∼ j, for example if i, j ∈ S, we have by linearity of expectation.

Σij = IE[σiσj ] =
1

m(m− 1)

(
IE

∑
(i,j)∈S2

σiσj −m
)

=
m

m− 1
IE[µ2

S ]− 1

m− 1
.

Since µS and µS̄ are identically distributed, we obtain the desired result.

For any i � j we have

Σij = IE[σiσj ] =
1

m2
IE

∑
(i,j)S×S̄

σiσj = IE[µSµS̄ ] , .

11



Unlike many models in the statistical literature, computing Σ exactly is di�cult in the

IBM. In particular, it is not immediately clear from Lemma 2.4 that ∆ > Ω, while this should be

intuitively true since β > α and therefore the spin interactions are stronger within blocks than

across blocks. It turns out that this simple fact can be checked by other means (see Lemma 3.7)

for any m ≥ 2. In the rest of this subsection, we use asymptotic approximations as m → ∞
to prove e�ective upper and lower bound on the gap ∆− Ω.

Proposition 2.5. Let ∆ and Ω be de�ned as in Lemma 2.4 and recall that G denotes the set of

ground states of the IBM. Then

∆− Ω 'm
1

2|G|
∑

(x̃,ỹ)∈G

(x̃− ỹ)2 +
1

m

( (β − α)(1− x̃2)2

2− (β − α)(1− x̃2)

)
.

In particular,

• If β + |α| < 2, then ∆− Ω 'm
1

m

( β − α
2− (β − α)

)
.

• If β + |α| > 2, then three cases arise:

1. if α = 0, then ∆− Ω 'm x̃2
,

2. if α > 0, then ∆− Ω 'm
1

m

( (β − α)(1− x̃2)2

2− (β − α)(1− x̃2)

)
> 0

3. if α < 0, then ∆− Ω 'm 2x̃2
.

Proof. It follows from Lemma 2.4 that

∆ =
m

m− 1
IEα,β[ϕ(µ)]− 1

m− 1

where ϕ(µ) = ‖µ‖22/2. Therefore, using Theorem 2.3, we get that for Z ∼ N2(0, I2),

∆ 'm
(

1 +
1

m

) 1

2|G|
∑
s̃∈G
‖s̃‖22 +

2

m
IE‖H−1/2Z‖22 −

1

m

=
(

1 +
1

m

) 1

2|G|
∑

(x̃,ỹ)∈G

(x̃2 + ỹ2) +
2

m
Tr(H−1)− 1

m
.

Using the same argument, we get that

Ω 'm
1

|G|
∑

(x̃,ỹ)∈G

x̃ỹ +
4

m
e>1 H

−1e2 ,

where e1 = (1, 0)> and e2 = (0, 1)> are the vectors of the canonical basis of IR2
. Therefore

∆− Ω 'm
1

2|G|
∑
s̃∈G

(x̃− ỹ)2 +
2

m
v>H−1v − 1

m
(1− x̃2)

12



where v = (1,−1). Lemma 2.2 implies that v is an eigenvector of H and thus of H−1
and

v>H−1v =
1

α− β + 2/(1− x̃2)
.

This completes the �rst part of the proof and it remains only to check the di�erent cases.

• If β + |α| < 2, then x̃ = ỹ = 0 is the unique ground state, which yields the result by

substitution.

• If β + |α| > 2, and

1. if α = 0, then |G| = 4 and there are two ground states (x̃,−x̃) and (−x̃, x̃) for which

(x̃− ỹ) does not vanish. The term in 1/m is negligible;

2. if α > 0, then for both ground states (x̃− ỹ)2 = 0 so that

∆− Ω 'm
1

m

( (β − α)(1− x̃2)2

2− (β − α)(1− x̃2)

)
The fact that this quantity is positive, follows from (A.5) with γ = 0.

3. if α < 0, then there are two ground states (x̃,−x̃) and (−x̃, x̃) and we can conclude as

in the case α = 0 but gain a factor of 2 because all the ground states contribute to the

constant term.

It follows from proposition 2.5 that if β + |α| 6= 2 then the covariance matrix Σ takes two

values that are separated by a term of order at least 1/m and even sometimes of order 1. In the

next section, we leverage this information to derive statistical results.
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6 BERTHET, RIGOLLET AND SRIVASTAVA

�2 2�4 4�1 1

2

4

(III)(I)

(II)

↵

�

Figure 1: The phase diagram of the Ising block model, with three regions for the
parameters ↵ and � > 0. In region (I), where ↵ < 0 and � + |↵| > 2, there are
two ground states of the form (x,�x) and (�x, x), x > 0. In region (II), where
� + |↵| < 2, there is one ground state at (0, 0). In region (III), where ↵ > 0 and
� + |↵| > 2, there are two ground states of the form (x, x) and (�x,�x), x > 0.
At the boundary between regions (I) and (III), there are four ground states. The
dotted line has equation ↵ = �, we only consider parameters in the region to its
left, where � > ↵.

Proof. Throughout this proof, for any b 2 IR, we denote by gcw
b (x), x 2

[�1, 1], the free energy of the Curie-Weiss model with inverse temperature b. We
write g := g↵,� for simplicity to denote the free energy of the IBM.

Note that

(2.7) g(x, y) = gcw
�+↵

2

(x) + gcw
�+↵

2

(y) + ↵(x � y)2 .

We split our analysis according to the sign of ↵. Note first that if ↵ = 0, we have

g(x, y) = gcw
�
2

(x) + gcw
�
2

(y) .

It yields that:

• If �  2, then gcw
�
2

has a unique local minimum at x = 0 which implies that g

has a unique minimum at (0, 0)
• If � > 2, then gcw

�
2

has exactly two minima at x̃(�/2) and �x̃(�/2), where

x̃(�/2) 2 (�1, 1). It implies that g has four minima at (±x̃(�/2), ±x̃(�/2)).

Next, if ↵ > 0, in view of (2.7) we have

g(x, y) � gcw
�+↵

2

(x) + gcw
�+↵

2

(y)

with equality i↵ x = y. It implies that:

• If ↵ + �  2, then g has a unique minimum at (0, 0)

Figure 2: Phase diagram of the Ising block model, with three regions for α and β > 0. In region (I),

where α < 0 and β + |α| > 2, there are two ground states of the form (x,−x) and (−x, x). In region

(II), where β + |α| < 2, there is one ground state at (0, 0). In region (III), where α > 0 and β + |α| > 2,

there are two ground states of the form (x, x) and (−x,−x). The dotted line has equation α = β, we

only consider parameters in the region to its left.
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3 Clustering in the Ising blockmodel

In this section, we focus on the following clustering task: given n i.i.d observations drawn from

IPα,β , recover the partition (S, S̄). To that end, we build upon the probabilisitic analysis of the

IBM that was carried out in the previous section in order to study the properties of an e�cient

clustering algorithm together with the fundamental limitations associated to this task.

3.1 Maximum likelihood estimation

Fix a sample size n ≥ 1. Given n independent copies σ(1), . . . , σ(n)
of σ ∼ IPα,β , the log-

likelihood is given by

Ln(S) =
n∑
t=1

log
(
IPα,β(σ(t))

)
= −n logZα,β −

m∑
t=1

Hibm

α,β(σ(t)) .

where Zα,β is the partition function de�ned in (1.2) andHibm

α,β is the IBM Hamiltonian de�ned

in (2.2). While both Zα,β andHibm

α,β could depend on the choice of the block S, it turns out that

Zα,β is constant over choices of S such that |S| = m = p/2.

Lemma 3.1. The partition function Zα,β = Zα,β(S) de�ned in (1.2) is such that Zα,β(S) =
Zα,β([m]) for all S of size |S| = m. This statement remains true even ifm 6= p/2.

Proof. Fix S ⊂ [p] such that |S| = m and denote by π : [p]→ [p] any bijection that maps [m]
to S. By (1.2) and (2.3), it holds

Zα,β(S) =
∑

σ∈{−1,1}p
exp

[ 1

4m

(
2α(σ>1S)(σ>1S̄)− β

(
(σ>1S)2 + (σ>1S̄)2

))]
=

∑
τ=π(σ)

σ∈{−1,1}p

exp
[ 1

4m

(
2α(τ>1S)(τ>1S̄)− β

(
(τ>1S)2 + (τ>1S̄)2

))]

since π is a bijection. Moreover, τ>1S = π(σ)>1S = σ>1[m] and τ>1S̄ = σ>1
[m]

. Hence

Zα,β(S) = Zα,β([m]) .

Because of the above lemma, we simply write Zα,β = Zα,β(S) to emphasize the fact that

the partition function does not depend on S. It turns out that the log-likelihood is a simple

function of S. Indeed, de�ne the matrix Q = QS ∈ IRp×p
such that Qij = β

p for i ∼ j and

Qij = α
p for i � j. Observe that (2.3) can be written as

Hα,β(σ) = −1

2
σ>Qσ = −1

2
Tr(σσ>Q) .

This in turns implies

Ln(S) = −n logZα,β +
n

2
Tr[Σ̂Q] ,
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where Σ̂ denotes the empirical covariance matrix de�ned in (2.1). Since α < β, it is not hard

to see that the likelihood maximization problem maxS⊂[p],|S|=m Ln(S) is equivalent to

max
V ∈P

Tr[Σ̂V ] , P = {vv> : v ∈ {−1, 1}p, v>1[p] = 0} . (3.1)

In particular, estimating the blocks (S, S̄) amounts to estimating vSv
>
S ∈ P , where vS =

1S − 1S̄ ∈ {−1, 1}p. Note that vSv
>
S = vS̄v

>
S̄

.For an adjacency matrix A, the optimization

problem maxV ∈P Tr[AV ] is a special case of theMinimumBisection problem and it is known to

be NP-hard in general (Garey et al., 1976). To overcome this limitation, various approximation

algorithms were suggested over the years, culminating with a poly-logarithmic approximation

algorithm (Feige and Krauthgamer, 2002). Unfortunately, such approximations are not directly

useful in the context of maximum likelihood estimation. Nevertheless, the maximum likelihood

estimation problem at hand is not worst case, but rather a random problem. It can be viewed as

a variant of the planted partition model (aka stochastic blockmodel) introduced in (Dyer and

Frieze, 1989). Indeed the block structure of Σ unveiled in Lemma 2.4 can be viewed as similar

to the adjacency matrix of a weighted graph with a small bisection. Moreover, Σ̂ can be viewed

as the matrix Σ planted in some noise. Here, unlike the original planted partition problem, the

noise is correlated and therefore requires a di�erent analysis. In random matrix terminology,

the observed matrix in the stochastic block model is of Wigner type, whereas in the IBM, it is of

Wishart type. It is therefore not surprising that we can use the same methodology in both cases.

In particular, we will use the semide�nite relaxation to the MAXCUT problem of Goemans and

Williamson (1995) that was already employed in the planted partition model (Abbé et al., 2016;

Hajek et al., 2016).

It can actually be impractical to use directly the matrix Σ̂ in the above relaxations, and we

apply a pre-preprocessing that amounts to a centering procedure, which simpli�es our analysis.

Given σ ∈ {−1, 1}p, de�ne its centered version σ̄ by

σ̄ = σ −
1>[p]σ

p
1[p] = Pσ ,

where P = Ip − 1
p1[p]1

>
[p] is the projector onto the subspace orthogonal to 1[p]. Moreover,

let Γ = PΣP and Γ̂ = P Σ̂P respectively denote the covariance and empirical covariance

matrices of the vector σ̄.

Note that for all V ∈ P , we have that Tr[Γ̂V ] = Tr[Σ̂V ] since V 1[p]1
>
[p] = 0, so that

PV P = V . It implies that the likelihood function is unchanged over P when substituting Σ̂
by Γ̂. Moreover, IE[Γ̂] = Γ and the spectral decomposition of Γ is given by

Γ = (1−∆)P + p
∆− Ω

2
uSu

>
S , (3.2)

where uS = vS/
√
p is a unit vector. Therefore the matrix Γ has leading eigenvalue (1 −

∆)+p(∆−Ω)/2 with associated unit eigenvector uS . Moreover, its eigengap is p(∆−Ω)/2. It

is well known in matrix perturbation theory that the eigengap plays a key role in the stability

of the spectral decomposition of Γ when observed with noise.
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3.2 Exact recovery via semide�nite programming

In this subsection, we consider the following semi-de�nite programming (SDP) relaxation of

the optimization problem (3.1):

max
V ∈E

Tr[Γ̂V ] , E =
{
V ∈ Sp : diag(V ) = 1[p], V � 0

}
, (3.3)

where Sp denotes the set of p × p symmetric real matrices. The set E is the set of correlation

matrices, and it is known as the elliptope. We recall the de�nition of the vector vS = 1S−1S̄ ∈
{−1, 1}p and note that vSv

>
S ∈ P ⊂ E . Moreover, we denote by V̂ SDP

any solution to the the

above program. Our goal is to show that (3.3) has a unique solution given by V̂ SDP = vSv
>
S , i.e.,

the SDP relaxation is tight. In contrast to the MLE, this estimator can be computed e�ciently

by interior-point methods (Boyd and Vandenberghe, 2004).

While the dual certi�cate approach of Abbé et al. (2016) could be used in this case (see

also Hajek et al. (2016)) we employ a slightly di�erent proof technique, more geometric, that

we �nd to be more transparent. This approach is motivated by the idea that the relaxation is

tight in the population case, suggesting that it might be the case as well when Γ̂ is close to Γ.

Recall that for any X0 ∈ E , the normal cone to E at X0 is denoted byNE(X0) and de�ned

by

NE(X0) =
{
C ∈ Sp : Tr(CX) ≤ Tr(CX0) , ∀X ∈ E

}
.

It is the cone of matrices C ∈ Sp such that maxX∈E Tr(CX) = Tr(CX0). Therefore, vSv
>
S is

a solution of (3.3), i.e., the SDP relaxation is tight, whenever Γ̂ ∈ NE(vSv>S ). The normal cone

can be described using the following Laplacian operator. For any matrix C ∈ Sp, de�ne

LS(C) := diag(CvSv
>
S )− C,

and observe that LS(C)vS = 0. Indeed, since vS ∈ {−1, 1}p, it holds,

diag(CvSv
>
S )vS = diag(CvS1

>
[p])1[p] = CvS .

Proposition 3.2. For any matrix C ∈ Sp, the following are equivalent
1. C ∈ NEp(vSv>S ) .

2. LS(C) = diag(CvSv
>
S )− C � 0 ,

Moreover, if LS(C) � 0 has only one eigenvalue equal to 0, then vSv
>
S is the unique maximizer

of Tr(CV ) over V ∈ E .

Proof. It is known (see Laurent and Poljak, 1996) that the normal cone NE(vSv>S ) is given by

NE(vSv>S ) =
{
C ∈ Sp : C = D −M,D diagonal, ,M � 0, v>SMvS = 0

}
,

where M � 0 denotes that M is a symmetric, semide�nite positive matrix. We are going to

make use of the following facts. First for any diagonal matrix D and any V ∈ E , it holds

diag(DV ) = D. Second, taking V = vSv
>
S , we get

LS(C)vSv
>
S = diag(CvSv

>
S )vSv

>
S − CvSv>S = diag(CvSv

>
S )− CvSv>S ,
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Figure 3: The geometric interpretation for the analysis of this convex relaxation. In the population

case, the true value of the parameter V = vSv
>
S is the unique solution of both the maximum likelihood

problem onP and of the convex relaxation on E , as Γ belongs to both normal cones at V . The relaxation

is therefore tight with Γ as input. We show that when the sample size is large enough, the sample matrix

Γ̂ is close enough to Γ and also in both normal cones, making V the solution to both problems.

so that

diag(LS(C)vSv
>
S ) = 0 . (3.4)

2.⇒ 1. Let C ∈ v>S be such that LS(C) � 0. By de�nition, we have C = diag(CvSv
>
S )−

LS(C) and it remains to check that v>S LS(C)vS = 0, which follows readily from (3.4) with

V = vSv
>
S .

1. ⇒ 2. Let C = D −M ∈ NEp(vSv>S ) where D is diagonal and M � 0, v>SMvS = 0,

which implies thatMvS = 0. It yields,CvSv
>
S = DvSv

>
S anddiag(CvSv

>
S ) = diag(DvSv

>
S ) =

D so that the decomposition is necessarilyD = diag(CvSv
>
S ) andM = LS(C) = diag(CvSv

>
S )−

C . In particular, LS(C) � 0.

Thus, if LS(C) � 0 then vSv
>
S is a maximizer of Tr(CV ) over V ∈ E . To prove unique-

ness, recall that for any maximizer V ∈ E , we have Tr(CV ) = Tr(CvSv
>
S ). Plugging

C = diag(CvSv
>
S )− LS(C) and using (3.4) yields

Tr(diag(CvSv
>
S )V )−Tr(LS(C)V ) = Tr(diag(CvSv

>
S )vSv

>
S )

= Tr(diag(CvSv
>
S )) .

Recall thatTr(diag(CvSv
>
S )V ) = Tr(diag(CvSv

>
S )) so that the above display yieldsTr(LS(C)V ) =

0. Since V � 0 and the kernel of the semide�nite positive matrix LS(C) is spanned by vS , we

have that V = vSv
>
S .

It follows from Proposition 3.2 that ifLS(Γ̂) � 0 and has only one eigenvalue equal to zero,

then vSv
>
S is the solution to (3.3). In particular, in this case, the SDP allows exact recovery of

18



the block structure (S, S̄). Observe that the conditions of Proposition 3.2 hold if Γ̂ is replaced

by the population matrix Γ. Indeed, using (3.2), we obtain

LS(Γ) =
(
1−∆ + p

∆− Ω

2

)
Ip − (1−∆)P − p∆− Ω

2
uSu

>
S

= (1−∆)
1[p]√
p

1>[p]√
p
− p∆− Ω

2
uSu

>
S + p

∆− Ω

2
Ip ,

where we used the fact that Ip − P is the projector onto the linear span of 1[p]. Therefore, the

eigenvalues of LS(Γ) are 0, 1 − ∆ + p(∆ − Ω)/2, both with multiplicity 1 and p(∆ − Ω)/2
with multiplicity p − 1. In particular, for p ≥ 2, LS(Γ) � 0 and it has only one eigenvalue

equal to zero.

Extending this result to LS(Γ̂) yields the following theorem, as illustrated in Figure 3. Let

Cα,β > 0 be a positive constant such that ∆−Ω > Cα,β/p. Note that such a constant Cα,β is

guaranteed to exist in view of Proposition 2.5.

Theorem 3.3. The SDP relaxation (3.3) has a unique maximum at V = vSv
>
S with probability

1− δ whenever
n > 16

(
3 +

2

Cα,β

) log(4p/δ)

∆− Ω
(1 + op(1)) .

In particular, the SDP relaxation recovers exactly the block structure (S, S̄).

Proof. Recall that LS(Γ̂)vS = 0 and any C ∈ Sp, denote by λ2[C] its second smallest eigen-

value. Our goal is to show that λ2[LS(Γ̂)] > 0. To that end, observe that

LS(Γ̂) = LS(Γ) + diag
(
(Γ̂− Γ)vSv

>
S

)
+ Γ− Γ̂ .

Therefore, using from Weyl’s inequality and the fact λ2[LS(Γ)] = p(∆− Ω)/2, we get

λ2[LS(Γ̂)] ≥ p∆− Ω

2
− ‖diag

(
(Γ̂− Γ)vSv

>
S

)
‖op − ‖Γ̂− Γ‖op , (3.5)

where ‖ · ‖op denotes the operator norm. Therefore, it is su�cient to upper bound the above

operator norms. This is ensured by the following Lemma.

Lemma 3.4. Fix δ > 0 and de�ne

Rn,p(δ) = 2pmax
(√(1 + 2/Cα,β)(∆− Ω) log(4p/δ)

n
,

(6 + 4/Cα,β) log(p/δ)

n

)
.

With probability 1− δ, it holds simultaneously that

‖Γ̂− Γ‖op ≤ Rn,p(δ)(1 + op(1)) . (3.6)

and

‖diag
(
(Γ̂− Γ)vSv

>
S

)
‖op ≤ Rn,p(δ)(1 + op(1)) . (3.7)
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Proof. To prove (3.6), we use a Matrix Bernstein inequality for sum of independent matrices

from Tropp (2015). To that end, note that

Γ̂− Γ =
1

n

n∑
t=1

Mt ,

whereM1, . . . ,Mn are i.i.d random matrices given byMt = (σ̄(t)σ̄(t)>−Γ), t = 1, . . . , n. We

have

‖Mt‖op ≤ ‖σ̄(t)σ̄(t)>‖op + ‖Γ‖op ≤ p+ ‖Γ‖op .

Furthermore, we have that

IE[M2
t ] = IE[‖σ̄(t)‖2σ̄(t)σ̄(t)> − σ̄(t)σ̄(t)>Γ− Γσ̄(t)σ̄(t)> + Γ2]

= pIE[σ̄(t)σ̄(t)>]− Γ2 − Γ2 + Γ2 � pΓ .

As a consequence,

∑n
t=1 IE[M2

t ] � pΓ. By Theorem 1.6.2 in Tropp (2015), this yields

IP
(
‖Γ̂− Γ‖op > t

)
≤ 2p exp

(
− nt2

2p‖Γ‖op + 2(p+ ‖Γ‖op)t

)
. (3.8)

We have ‖Γ̂− Γ‖op ≤ t with probability 1− δ for any t such that

log(2p/δ) ≤ nt2

2p‖Γ‖op + 2(p+ ‖Γ‖op)t
.

This holds for all

t ≤ max
(√4p‖Γ‖op log(2p/δ)

n
,

4(p+ ‖Γ‖op) log(2p/δ)

n

)
.

To conclude the proof of (3.6), observe that

‖Γ‖op = p
∆− Ω

2
+ 1−∆ ≤

(
1 +

1

Cα,β

)
(∆− Ω)p ,

where Cα,β > 0 is de�ned immediately before the statement of Theorem 3.3.

We now turn to the proof of (3.7). Recall that vS ∈ {−1, 1}p so that the ith diagonal

element is given by

diag
(
(Γ̂− Γ)vSv

>
S

)
ii

= e>i (Γ̂− Γ)vS ,

where ei denotes the ith vector of the canonical basis of IRp
. Hence,

‖diag
(
(Γ̂− Γ)vSv

>
S

)
‖op = max

i∈[p]

∣∣diag ((Γ̂− Γ)vSv
>
S

)
ii

∣∣ = max
i∈[p]
|e>i (Γ̂− Γ)vS | .

We bound the right hand-side of the above inequality by noting that

e>i (Γ̂− Γ)vS =
m

n

n∑
t=1

(
σ̄

(t)
i (µ

(t)
S − µ

(t)

S̄
)− IE[σ̄

(t)
i (µ

(t)
S − µ

(t)

S̄
)]
)
,

20



where µ
(t)
S = 1>S σ̄

(t)/m ∈ [−1, 1] and µ
(t)

S̄
is de�ned analogously. The random variables

σ̄
(t)
i (µ

(t)
S − µ

(t)

S̄
) − IE[σ̄

(t)
i (µ

(t)
S − µ

(t)

S̄
)] are centered, i.i.d., and are bounded in absolute value

by 2 for all t ∈ [n]. Moreover, it follows from Lemma 2.4 that the variance of these random

variables is bounded by

IE[(µ
(t)
S − µ

(t)

S̄
)2] ≤ 2(∆− Ω) +

4

p
=: ν2 .

By a one-dimensional Bernstein inequality, and a union bound over p terms, we have therefore

that

IP
(

max
i∈[p]
|e>i (Γ̂− Γ)vS | >

pt

n

)
≤ 2p exp

(
− t2/2

nν2 + 2t/3

)
.

which yields

max
i∈[p]
|e>i (Γ̂− Γ)vS | ≤ pmax

(√2ν2 log(2p/δ)

n
,
4 log(2p/δ)

3n

)
,

with probability 1− δ. It completes the proof of (3.7).

To conclude the proof of Theorem 3.3, note that for the prescribed choice of n, we have

2Rn,p(δ)(1 + op(1)) < p
∆− Ω

2

and it follows from (3.5) that λ2[LS(Γ̂)] > 0.

Remark 3.5. We have not attempted to optimize the constant term 16(3 + 2/Cα,β) that ap-

pears in Theorem 3.3 and it is arguably suboptimal. One way to see how it can be reduced at

least by a factor 2 is by noting that the factor p in the right-hand side of (3.8) is in fact super-

�uous thus resulting in a extra logarithmic factor in (3.6). This is because, akin to the stochastic

blockmodel analysis in Abbé et al. (2016), the matrix deviation inequality from Tropp (2015) is

too coarse for this problem. The extra factor p may be removed using the concentration results of

Section 2.3 but at the cost of a much longer argument. Indeed, using Theorem 2.3, we can estab-

lish the concentration of local magnetization around the ground states and conditionally on these

magnetizations, the con�gurations are uniformly distributed. These conditional distributions can

be shown to exhibit sub-Gaussian concentration so that σ>u and thus σ̄>u are sub-Gaussian with
constant variance proxy for any unit vector u ∈ IRp

. This result can yield a bound for ‖Γ̂− Γ‖op

using an ε-net argument that is standard in covariance matrix estimation. With this in mind, we

could get an upper bound in (3.6) that is negligible with respect toRn,p thereby removing a factor

2. Nevertheless, in absence of a tight control of the constant Cα,β , exact constants are hopeless and
beyond the scope of this paper.

Combined with Proposition 2.5 that quanti�es the gap ∆−Ω in terms of the dimension p,

Theorem 3.3 readily yields the following corollary.

Corollary 3.6. There exists positive constants C1 and C2 that depend on α and β such that

the following holds. The SDP relaxation (3.3) recovers the block structure (S, S̄) exactly with

probability 1− δ whenever
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1. n ≥ C1p log(p/δ) if β + |α| < 2 or α > 0

2. n ≥ C2 log(p/δ) otherwise.

In particular, if β − α > 2, α ≤ 0 a number of observations that is logarithmic in the dimension

p is su�cient to recover the blocks exactly.

These results suggest that there is a sharp phase transition in sample complexity for this

problem, depending on the value of the parameters α and β. We address this question further

in Section 4. The last subsection shows that these rates are, in fact, optimal.

3.3 Information theoretic limitations

In this section, we present lower bounds on the sample size needed to recover the partition

(S, S̄) and compare them to the upper bounds of Theorem 3.3. In the sequel, we write Ŝ � S

if either (Ŝ,
¯̂
S) = (S, S̄) or (Ŝ,

¯̂
S) = (S̄, S) to indicate that the two partitions are the same.

We write Ŝ 6� S to indicate that the two partitions are di�erent.

For any balanced partition (S, S̄), consider a “neighborhood” TS of (S, S̄) composed of

balanced partitions such that for all (T, T̄ ) ∈ TS , we have ρ(S, T ) = 1 and ρ(S̄, T̄ ) = 1. We

�rst compute the Kullback–Leibler divergence between the distributions IPS and IPT .

Lemma 3.7. For any positive β, α < β, and T ∈ TS , it holds that

KL(IPT , IPS) =
p− 2

p
(β − α)(∆− Ω) .

Proof. By de�nition of the divergence and of the distributions, we have that

KL(IPT , IPS) = IET

[
log
( IPT

IPS
(σ)
)]

= IET
[
Tr[(QT −QS)σσ>]

]
= Tr[(QT −QS)ΣT ]

Note that most of the coe�cients of QT −QS are equal to 0. In fact, noting {s} = S ∩ T̄ and

{t} = S̄ ∩ T , we have

(QT −QS)ij =
α− β
p

if


i ∈ S \ {s} , j = s

i = s , j ∈ S \ {s}
i ∈ S̄ \ {t} , j = t

i = t , j ∈ S̄ \ {t}

and

(QT −QS)ij =
β − α
p

if


i ∈ S \ {s} , j = t

i = s , j ∈ S̄ \ {t}
i ∈ S̄ \ {t} , j = s

i = t , j ∈ S \ {s} ,
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and 0 otherwise. There are therefore p − 2 coe�cients of each sign. Furthermore, whenever

(QT − QS)ij = (α − β)/p, we have (ΣT )ij = Ω, and whenever (QT − QS)ij = (β − α)/p,

we have (ΣT )ij = ∆. Computing Tr[(QT −QS)ΣT ] explicitly yields the desired result.

From this lemma, we derive the following lower bound.

Theorem 3.8. For γ ∈ (0, 3/5) and p ≥ 6 and

n ≤ γ log(p/4)

(β − α)(∆− Ω)
.

We have

inf
Ŝ

max
S∈S

IP⊗nS
(
(Ŝ,

¯̂
S) 6� (S, S̄)) ≥ p− 2

p

(
1− γ −√γ

)
> 0 ,

where the in�mum is taken over all estimators of S. Note that the right-hand side of the above

inequality goes to 1 as p→∞ and γ → 0.

Proof. First, note that by Lemma 3.7, for any T ∈ TS , it holds |TS | = (p/2− 1)2
so that

KL(IP⊗nT , IP⊗nS ) = nKL(IPT , IPS) ≤ n(β − α)(∆− Ω) ≤ γ log(p/4) ≤ γ

2
log |TS | .

Thus Theorem 2.5 in Tsybakov (2009) yields

inf
Ŝ

max
S∈P

IP⊗nS (Ŝ 6� S) ≥
√
|TS |

1 +
√
|TS |

(
1− γ −

√
γ

log(|TS |)
)

≥ p− 2

p

(
1− γ −√γ

)
> 0 ,

for γ ∈ (0, 3/5).

The lower bound of Theorem 3.8 matches the upper bounds of Theorem 3.3 up to numerical

constant. This indicates that the SDP relaxation studied in the paper is rate optimal: the sample

complexity stated in Corollary 3.6 has optimal dependence on the dimension p. Note that past

work on exact recovery in the stochastic blockmodel (Abbé et al., 2016; Hajek et al., 2016)

was able to show that SDP was also optimal with respect to constants. We do not pursue this

questions in the present paper.

4 Conclusion and open problems

This paper introduces the Ising block model (IBM) for large binary random vectors with an

underlying cluster structure. In this model, we studied the sample complexity of recovering

exactly the clusters. Unsurprisingly, this paper bears similarities with the stochastic block-

model, but also di�erences. For example, in the stochastic blockmodel one is given only one

observation of the graph. In the IBM, given one realization σ(1) ∈ {−1, 1}p, the maximum

likelihood estimator is the trivial clustering that assigns i ∈ [p] to a cluster according to the

sign of σ
(1)
i , up to a trivial reassignment to keep the partition balanced.

Below is a summary of our main �ndings:
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1. The model exhibits three phases depending on the values taken by two parameters.

2. In one phase, where the two clusters tend to have opposite behavior, the sample com-

plexity is logarithmic in the dimension; in the other two, it is near linear. These sample

complexities are proved to be optimal in an information theoretic sense.

3. Akin to the stochastic blockmodel, the optimal sample complexity is achieved using the

natural semide�nite relaxation to the MAXCUT problem.

Many questions regarding this model remain open. The �rst and most natural is the de-

termination of exact constants. Theorem 3.8 suggests that there exists a universal constant C?

such that the optimal sample complexity is

C? log(p)

(β − α)(∆− Ω)
(1 + op(1)) .

Throughout this paper, we have only kept loosely track of the correct dependency of the con-

stants as function of the constants (α, β). We have shown that the optimal sample complexity

is a product of log(p)/(∆ − Ω) and of a constant term that only becomes arbitrarily large

when α is very close to β, with a divergence of order (β − α)−1
, which is consistent with our

lower bound. In the spirit of exact thresholds for the stochastic blockmodel (Abbé et al., 2016;

Massoulié, 2014; Mossel et al., 2015), we �nd that proving existence of the constant C? and

computing it worthy of investigation but is beyond the scope of the present paper.

Another possible development is the extension of this model to settings with multiple

blocks, possibly of unbalanced sizes. This has been studied in the case of the stochastic block-

model for graphs in the sparse case (Abbé and Sandon, 2015; Banks et al., 2016) and in the dense

case (Gao et al., 2015, 2016; Rohe et al., 2011). For the Ising blockmodel, the main challenge is

that the population covariance matrix cannot be directly computed from the parameters of the

problem, and an analysis of the ground states of the free energy is required. Developing a gen-

eral approach to this task, rather than having to do an ad hoc analysis for each case would be

an important step in this direction.

We have only analyzed in this work the performance of the semide�nite positive relaxation

of the maximum likelihood problem, but other methods can be considered for total or partial

recovery. In related problems, belief propagation is used to recover communities (see e.g. Abbé

and Sandon, 2016a,b; Lesieur et al., 2017; Moitra et al., 2016; Mossel et al., 2014, and work cited

above). In particular, Lesieur et al. (2017) covers Hop�eld models, which are a generalization of

our model. Another possible venue is the use of greedy random algorithms, which have been

used to �nd local solutions of MAXCUT in Angel et al. (2016). It is possible that studying these

types of algorithms is necessary in order to obtain sharper rates.

Finally, in view of the simple spectral decomposition (3.2) of Γ, one may wonder about the

behavior of the a simple method that consists in computing the leading eigenvector of Γ̂ and

clustering according to the sign of its entries. Such a method is the basis of the approach in

denser graph models in McSherry (2001) or Alon et al. (1998). The results of such an approach

are easily implementable as follows.
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Let û denote a leading unit eigenvectors of Γ̂ and consider the following estimate for the

partition (S, S̄):

Ŝ � {i ∈ [p] | ûi > 0} . (4.1)

It follows from the Perron-Frobenius theorem that Ŝ � S whenever sign(Γ̂) = sign(Γ).

This allows for perfect recovery of S, but only holds with high probability when n is of or-

der log(p)/(∆ − Ω)2
, which is suboptimal. It is however possible to obtain partial recovery

guarantees for the spectral recovery. In order to state our result, for any two partitions (S, S̄),

(T, T̄ ) de�ne

|S3T | = min
(
|S 4 T |, |S 4 T̄ |

)
where4 denotes the symmetric di�erence.

Proposition 4.1. Fix δ ∈ (0, 1) and let Ŝ ⊂ [p] be de�ned in (4.1). Then, there exits a constant

γα,β > 0 such that with probability 1− δ,

1

p
|S3Ŝ| ≤ γα,β

log(4p/δ)

n(∆− Ω)
.

Proof. Let û denote the leading unit eigenvector of Γ̂ and let v̂ =
√
pû. Recall that vS = 1S−1S̄

and observe that

|S3Ŝ| = min
( p∑
i=1

1I(v̂i · (vS)i ≤ 0),

p∑
i=1

1I(v̂i · (vS)i ≥ 0)
)

≤ min
(
‖v̂ − vS‖2, ‖v̂ + vS‖2

)
= pmin

(
‖û− uS‖2, ‖û+ uS‖2

)
,

where in the inequality, we used the fact that vS ∈ {−1, 1}p so that

1I(v̂i · (vS)i ≤ 0) ≤ |v̂i − (vS)i|1I(v̂i · (vS)i ≤ 0) ≤ |v̂i − (vS)i|2 .

Using a variant of the Davis-Kahan lemma (see, e.g, Wang et al. (2016)), we get

1

p
|S3Ŝ| ≤

‖Γ̂− Γ‖2op

(λ1(Γ)− λ2(Γ))2
,

and the result follows readily from (3.6) and the fact that the eigengap of Γ is given by p(∆−
Ω)/2.

In terms of exact recovery, this result is quite weak as it only gives guarantees for a sample

complexity of the order of p log(p/δ)/(∆−Ω), which is suboptimal by a factor of p. Moreover,

for the bound of Proposition 4.1 to be non-trivial, one already needs the sample size to be of

the same order as the one required for exact recovery by semi-de�nite programming. Never-

theless Proposition 4.1 raises the question of the optimal rates of estimation of S with respect

to the metric |S3Ŝ|/p. While partial recovery is beyond the scope of this paper, it would be

interesting to establish the optimal rate.
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A Facts about the Curie-Weiss model

We begin by stating some well known facts about the Curie-Weiss model. These results are

standard in the statistical physics literature and the interested reader can �nd more details

in Ellis (2006); Friedli and Velenik (2016) for example. However, the precise behavior of the

free energy that we need for our subsequent analysis does not seem to be readily available in

the literature so we prove below a lemma that suits our purposes.

Recall that the Curie-Weiss model is a special case of the Ising block model when α = β =
b. In this case, the free energy takes the form:

gcwb (µ) = −2bµ2 − 4h
(µ+ 1

2

)
(A.1)

where we recall that µ = σ>1/p is the global magnetization of σ. The minima x ∈ (−1, 1) of

g are called ground states and satisfy the �rst order optimality condition, also known as mean

�eld equation

log
(1 + x

1− x
)

= 2bx .

If b ≤ 1, then the unique solution to the mean �eld equation is x = 0. Moreover, gcwb is

increasing on [0, 1].
If b > 1, then the mean �eld equation has two solutions x̃ > 0 and −x̃ in (−1, 1). In any

case, these solutions are global minima that are also the only local minima of gcwb . In particular,

when b > 1, gcwb is monotone decreasing in the interval (0, x̃) and monotone increasing in the

interval (x̃, 1).

The following lemma is a re�nement of these well-known facts that quanti�es the curvature

of gcwb around its minima.

Lemma A.1. Fix b > 1 in the Curie-Weiss model and denote by x̃ > 0 and −x̃ the two ground

states. Then it holds:

1− 2b

2b2 + b− 1
< x̃2 < 1− e−2b .

Moreover, for any x ∈ (0, 1), it holds

gcwb (x) ≥ gcwb (x̃) +
b− 1

2b
(|x− x̃| ∧ ε)2, (A.2)

and

gcwb (x) ≥ gcwb (−x̃) +
b− 1

2b
(|x+ x̃| ∧ ε)2, (A.3)

where ε = e−2b

4

(
1− 1

b

)
.
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Fix b ≤ 1 in the Curie-Weiss model and recall that x̃ = 0 is the unique ground state. Then for

any x ∈ (−1, 1) it holds

gcwb (x) ≥ gcwb (0) + (1− b)(x ∧ ε′)2 . (A.4)

where

ε′ =

√
1− b

3
.

Proof. Observe that for x > 0, we have

2bx̃ = log
(1 + x̃

1− x̃
)
<

2x̃

1− x̃2
− γx̃3 , ∀γ ≤ 1 . (A.5)

Taking γ = 0 implies that x̃ >
√

1− 1/b. Plugging this into (A.5) with γ = 1 yields

2bx̃ <
2x̃

1− x̃2
− x̃
(
1− 1

b

)
.

Solving for x̃ once again yields

2

1− x̃2
> 2b+ 1− 1

b
(A.6)

Or equivalently that

x̃2 > 1− 2b

2b2 + b− 1
.

Moreover, the mean �eld equation yields

2b > 2bx̃ = log
(1 + x̃

1− x̃
)
> − log(1− x̃)

so that

x̃ < 1− e−2b
(A.7)

which readily yields the desired upper bound on x̃2
.

We conclude this proof by showing that gcwb is at least quadratic in a neighborhood of its

minima when b 6= 1. To that end, observe �rst that the second and third derivatives of g are

given respectively by

∂2

∂x2
gcwb (x) = −4b+

4

1− x2
,

∂3

∂x3
gcwb (x) = − 8x

(1− x2)2
,

First assume that b > 1. A Taylor expansion of gcwb around x̃ together with (A.6) and (A.7)

yields that for any ε ∈ (0, 1) and x such that

|x− x̃| ≤ ε :=
e−2b

2
∧
(
1− 1

b

)
,
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gcwb (x) ≥ gcwb (x̃) +
(
1− 1

b

)
(x− x̃)2 − 4

3(1− (x̃+ ε)2)2
|x− x̃|3

≥ gcwb (x̃) +
(
1− 1

b

)
(x− x̃)2 − 4

3(1− x̃− ε) |x− x̃|
3

≥ gcwb (x̃) +
(
1− 1

b

)
(x− x̃)2 − 4ε

3(e−2b − ε)(x− x̃)2

≥ gcwb (x̃) +
1

2

(
1− 1

b

)
(x− x̃)2 .

Now, using the fact that gcwb is monotone decreasing on (0, x̃−ε) and monotone increasing

in (x̃+ ε, 1), we obtain the claim in (A.2). The lower bound (A.3) follows by symmetry.

Next, assume that b < 1. A Taylor expansion of gcwb around 0 yields that for any x such

that |x| < ε′, ε′ ∈ (0, 1),

gcwb (x) > gcwb (0) +
[
2(1− b)− 4ε2

3(1− ε2)2

]
x2

≥ gcwb (0) + (1− b)x2

for

ε′ ≤
√

1− b
3

.

Using the fact that gcwb is monotone decreasing on [1,−ε) and monotone increasing on (ε, 1]
yields (A.4).

Remark A.2. When b = 1, the Hessian of gcwb vanishes at 0. In this case, gcwb is not lower

bounded by a quadratic term.

B Inequalities

B.1 Bounds on binomial coe�cients

We need the following well known information theoretic estimate. Recall that the binary en-

tropy function h : [0, 1]→ IR is de�ned by h(0) = h(1) = 0 and for any s ∈ (0, 1) by

h(s) = −s log(s)− (1− s) log(1− s) .

Lemma B.1. Letm be a positive integer and let γ ∈ [0, 1] be such that γm is an integer. Then(
m

γm

)
≤ exp(mh(γ)) .

Proof. Let X ∼ Bin(n, γ) be a binomial random variable. Then

1 ≥ IP(X = γm) =

(
m

γm

)
γγm(1− γ)(1−γ)m =

(
m

γm

)
exp(−mh(γ)) .
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The following sharper estimate follows from the Stirling approximation of n! developed

in Robbins (1955).

Lemma B.2. Let ε > 0,m a positive integer let γ ∈ [ε, 1− ε] be such that γm is an integer. We

then have

exp

(
− 1

12ε2m

)
≤
√

2πmγ(1− γ) exp(mh(γ))

(
m

γm

)
≤ exp

(
1

12m

)
.

Proof. It follows from Robbins (1955)) that for any positive integer n,

1 ≤ exp

(
1

12n+ 1

)
≤ n!√

2πn(n/e)n
≤ exp

(
1

12n

)
.

Applying this to (
m

γm

)
=

m!

(γm)!((1− γ)m)!

yields the desired bounds.

B.2 Tail bound for the χ2 distribution

We recall here a well known tail bound for the χ2
distribution (see Laurent and Massart, 2000,

Lemma 1).

Lemma B.3. Let Z ∼ N2(0, I2) be a bivariate standard Gaussian vector. Then, for any t ≥ 2, it
holds

IP(‖Z‖22 − 2 ≥ 2) ≤ exp(−t/4) .
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