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Abstract. We consider the problem of bandit optimization, inspired by
stochastic optimization and online learning problems with bandit feed-
back. In this problem, the objective is to minimize a global loss function
of all the actions, not necessarily a cumulative loss. This framework al-
lows us to study a very general class of problems, with applications
in statistics, machine learning, and other fields. To solve this problem,
we analyze the Upper-Confidence Frank-Wolfe algorithm, inspired by
techniques for bandits and convex optimization. We give theoretical
guarantees for the performance of this algorithm over various classes of
functions, and discuss the optimality of these results.
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INTRODUCTION

In online optimization problems, a decision maker choses at each round t ≥ 1
an action πt from some given action space, observes some information through
a feedback mechanism in order to minimize a loss, function of the set of ac-
tions {π1, . . . , πT }. Traditionally, this objective is computed as a cumulative loss
of the form

∑
t `t(πt) [Haz12, SS11], or as a function thereof [AD14, ADL16,

EDKMM09, RST11].
Examples include classical multi-armed bandit problems where the action space

is finite with K elements, in stochastic or adversarial settings [BCB12]. In these
problems, the loss at round t can be written as `t(eπt) for a linear form `t on
IRK , and basis vectors ei. More generally, this includes also bandit problems over
a convex body C, where the action at each round consists in picking xt ∈ C and
where the loss `t(xt) is for some convex function `t (see, e.g. [BCB12, CBL06,
HL14, BEL16]).

In this work, we consider the online learning problem of bandit optimization.
Similarly to other problems of this type, a decision maker chooses at each round an
action πt from a set of size K, and observes information about an unknown convex
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loss function L. The difference is that the objective is to minimize a global convex
loss L

(
1
T

∑T
t=1 eπt

)
, not a cumulative one. At each round, choosing the i-th action

increases the information about the local dependency of L on its i-th coefficient.
This problem can be contrasted with the objective of minimizing the average
pseudo-regret in a stochastic bandit problem, i.e. of minimizing 1

T

∑T
t=1 L(eπt)

with observation `t(eπt), a noisy estimate of L(eπt). At the intersection of these
frameworks, when L is a linear form, is the stochastic multi-armed bandit prob-
lem. Our problem is also related to maximization of known convex objectives
[AD14, ADL16]. We compare our framework to these settings in Section 1.4.

Bandit optimization shares some similarities with stochastic optimization prob-
lems, where the objective is to minimize f(xT ) for an unknown function f , while
choosing at each round a variable xt and observing some noisy information about
the function f . Our problem can be seen as a stochastic optimization problem
over the simplex, with the caveat that the list of actions π1, . . . , πT determines
the variable, as xt = 1

t

∑t
s=1 eπs , as well as the manner in which additional in-

formation about the function can be gathered. This setting allows us to study a
more general class of problems than multi-armed bandits, and to cover examples
where there is not one optimal action, but rather an optimal global strategy, that
is an optimal mix of actions. We describe several natural problems from machine
learning, statistics, or economics that are cases of bandit optimization.

This problem draws inspiration from the world of multi-armed bandit problems
and that of stochastic convex optimization, and our solution to it does as well.
We analyze the Upper-Confidence Frank-Wolfe algorithm, a modification of the
Frank-Wolfe algorithm [FW56] and of the UCB algorithm for bandits [ACBFS02].
The link with Frank-Wolfe is related to the choice of one action, and encourages
exploitation, while the link with UCB encourages to chose rarely picked actions
in order to increase knowledge about the function, encouraging exploration. This
algorithm can be used for all convex functions L, and performs in a near-optimal
manner over various classes of functions. Indeed, if it has been already proved
that it achieves slow rates of convergence in some cases, i.e., the error decreases
as 1/

√
T , we are able to exhibit fast rates decreasing in 1/T , up to logarithmic

terms.
These fast rates are surprising, as they sometimes even hold for non-strongly

convex functions, and in many problems with bandit feedback they cannot be
reached [JNR12, Sha13]. As shown in our lower bounds, the main complexity of
this problem is statistical and comes from the limited information available about
the unknown function L. Usual results in optimization with a known function are
not necessarily relevant to our problem. As an example, while linear rates in e−cT

are possible in deterministic settings with variants in the Frank-Wolfe algorithm,
we are limited to fast rates in 1/T under similar assumptions. Interestingly, while
linear functions are one of the settings in which the deterministic Frank-Wolfe
algorithm is the most efficient, it is among the most complicated for bandit op-
timization, and only slow rates are possible in general (see theorems 3 and 8).

Our work is organized in the following manner: we describe in Section 1 the
problem of bandit optimization. The main algorithm is introduced in Section 2,
and its performance in various settings is studied in Section 3, 4, and 5. All proofs
of the main results are in the supplementary material.
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Notations: For any positive integer n, denote by [n] the set {1, . . . , n} and, for
any positive integer K, by ∆K :=

{
p ∈ IRK : pi ≥ 0 and

∑
i∈[K]pi = 1

}
the

unit simplex of IRK . Finally, ei stands for the i-th vector of the canonical basis
of IRK . Notice that ∆K is their convex hull.

1. BANDIT OPTIMIZATION

We describe the bandit optimization problem, generalizing multi-armed ban-
dits. This stochastic optimization problem is doubly related to bandits: The de-
cision variable cannot be chosen freely but is tied to the past actions, and infor-
mation about the function is obtained via a bandit feedback.

1.1 Problem description

A each time step t ≥ 1, a decision maker chooses an action πt ∈ [K] from
K different actions with the objective of minimizing an unknown convex loss
function L : ∆K → IR. Unlike in traditional online learning problems, we do not
assume that the overall objective of the agent is to minimize a cumulative loss∑

t L(eπt) but rather to minimize the global loss L(pT ), where pt ∈ ∆K is the
vector of proportions of each action (also called occupation measure), i.e.,

pt =
(
T1(t)/t, . . . , TK(t)/t

)
with Ti(t) =

∑t
s=11I{πs = i} .

Alternatively, pt = 1
t

∑t
i=1 eπs . As usual in stochastic optimization, the perfor-

mance of a policy is evaluated by controlling the difference

r(T ) := IE[L(pT )]− min
p∈∆K

L(p) .

The information available to the policy is a feedback of bandit type: given the
choice πt = i, it is an estimate ĝt of ∇L(pt). Its precision, with respect to each
coefficient i ∈ [K], is specified by a deviation function αt,i, meaning that for all
δ ∈ (0, 1), it holds with probability 1− δ that

|ĝt,i −∇iL(pt)| ≤ αt,i(Ti(t), δ) .

At each round, it is possible to improve the precision for one of the coefficients
of the gradient but possibly at a cost of increasing the global loss. The most typical
case, described in the following section, is of αt,i(Ti, δ) =

√
2 log(t/δ)/Ti, when

the information consists of observations from different distributions. In general,
this type of feedback mechanism is indicative of a bandit feedback (and not of a
full information setting), as motivated by the following parametric setting.

1.2 Bandit feedback and parametric setting

One of the motivations is the minimization of a loss function L belonging to a
known class {L(µ, ·), µ ∈ IRK} with an unknown parameter µ. Choosing the i-th
action provides information about µi, through an observation of some auxiliary
distribution νi.

As an example, the classical stochastic multi-armed bandit problem [BCB12]
falls within our framework. Denoting by µi the expected loss of arm i ∈ [K], the
average pseudo-regret R̄ can be expressed as

R̄(t) =
1

t

t∑
s=1

µπs − µ∗ =

K∑
i=1

µi
Ti(t)

t
− µ∗ = p>t µ− p>∗ µ, with p∗ = ei∗ ,
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Hence the choice of L(µ, p) = µ>p corresponds the problem of multi-armed ban-
dits. Since ∇L(µ, p) = µ, the feedback mechanism for ĝt is induced by having a
sample Xt from νπt at time step t, taking ĝt,i = X̄t,i, the empirical mean of the
Ti(t) observations νi. In this case, if νi is sub-Gaussian with parameter 1, we have
αt,i(Ti, δ) = 2

√
2 log(t/δ)/Ti.

More generally, for any parametric model, we can consider the following obser-
vation setting: For all i ∈ [K], let νi be a sub-Gaussian distribution with mean µi
and tail parameter σ2. At time t, for an action πt ∈ [K], we observe a realization
from νπt . We estimate µi by the empirical mean µ̂t,i of the Ti(t) draws from νi,
and ĝt = ∇pL(µ̂t, pt) as an estimate of the gradient of L = L(µ, ·) at pt. The
following bound on αi under smoothness conditions on the parametric model is
a direct application of Hoeffding’s inequality.

Proposition 1. Let L = L(µ, ·) for some µ ∈ IRK being µ-gradient-Lipschitz,
i.e., such that∣∣∣(∇pL(µ, p)

)
i
−
(
∇pL(µ′, p)

)
i

∣∣∣ ≤ |µi − µ′i| , ∀p ∈ ∆([K]).

Under the sub-Gaussian observation setting above, ĝt = ∇pL(µ̂t, pt) is a valid
gradient feedback with deviation bounds αt,i(Ti, δ) =

√
2σ2 log(t/δ)/Ti.

This Lipschitz condition on the parameter µ gives a motivation for our gradient
bandit feedback.

1.3 Examples

Stochastic multi-armed bandit: As noted above, the stochastic multi-armed ban-
dit problem is a special case of our setting for a loss L(p) = µ>p, and the bandit
feedback allows to construct a proxy for the gradient ĝt with deviations αi de-
caying in 1/

√
Ti. The UCB algorithm used to solve this problem inspires our

algorithm that generalizes to any loss function L, as discussed in Section 2.

Online experimental design: In the context of statistical estimation with het-
erogenous data sources [BC16], consider the problem of allocating samples in
order to minimize the variance of the final estimate. At time t, it is possible to
sample from one of K distributions N (θi, σ

2
i ) for i ∈ [K], the objective being to

minimize the average variance of the simple unbiased estimator

IE[‖θ̂ − θ‖22] =
∑

i∈[K]σ
2
i /Ti equivalent to L(p) =

∑
i∈[K]σ

2
i /pi .

For unknown σi, this problem falls within our framework and the gradient with
coordinates −σ2

i /p
2
i can be estimated by using the Ti draws from N (θi, σ

2
i ) to

construct σ̂2
i . This function is only defined on the interior of the simplex and

is unbounded, matters that we discuss further in Section 4.3. Other objective
functions than the expected `2 norm of the error can be used, as in [CLG+15],
who consider the `∞ norm of the actual estimated deviations, not its expectation.

Utility maximization: A classical model to describe the utility of an agent pur-
chasing xi units ofK different goods is the Cobb-Douglas utility (see e.g. [MCWG95])
defined for parameters βi ∈ (0, 1) by

U(x1, . . . , xK) =
∏
i∈[K]x

βi
i .
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Maximizing this utility for unknown βi under a budget constraint - where each
price is assumed to be 1 for ease of notations - by buying one unit of one of K
goods at each round, is therefore equivalent to minimizing in pi (the proportion
of good i in the basket) L(p) = −

∑
i∈[K]βi log(pi).

Other examples: More generally, the notion of bandit optimization can be ap-
plied to any situation where one optimizes a strategy through actions that are
taken sequentially, with information gained at each round, and where the ob-
jective depends only on the proportions of actions. Other examples include a
problem inspired by online Markovitz portfolio optimization, where the goal is
to minimize L(p) = p>Σp − λµ>p, with a known covariance matrix Σ and un-
known returns µ, or several generalizations of bandit problems such as minimiz-
ing L(p) =

∑
i∈[K]fi(µi)pi when observations are drawn from a distribution with

mean µi, for known fi.

1.4 Comparison with other problems

As mentioned in the introduction, the problem of bandit optimization is dif-
ferent from online learning problems related to regret minimization [HAK07,
AFH+11, BEL16], even in a stochastic setting. While the usual objective is to
minimize a cumulative regret related to 1

T

∑
t `t(xt), we focus on L( 1

T

∑
t eπt).

Problems related to online optimization of global costs or objectives have been
studied in similar settings [AD14, ADL16, EDKMM09, RST11]. They are equiv-
alent to minimizing a loss L(p>T V ) where V is a K × d unknown matrix and
L(·) : IRd → IR is known. The feedback at stage t is a noisy evaluations of Vπt .
In the stochastic case [AD14, ADL16], this is close to our setting - even though
none of them subsumes directly the other one. Only slow rates of convergence
of order 1/

√
T are derived for the variant of Frank-Wolfe, while we aim at fast

rates, which are optimal. In contrast, in the adversarial case [EDKMM09, RST11],
there are instances of the problem where the average regret cannot decrease to
zero [MPS14].

Using the Frank-Wolfe algorithm in a stochastic optimization problem has
also already been considered, particularly in [LWM15], where the estimates of the
gradients are increasingly precise in t, independently of the actions of the decision
maker. This setting, where the action at each round is to pick xt in the domain
in order to minimize f(xT ) is therefore closer to classical stochastic optimization
than online learning problems related to bandits [BCB12, HL14, BEL16].

2. UPPER-CONFIDENCE FRANK-WOLFE ALGORITHM

With linear functions, as in multi-armed bandits, an estimate of the gradient
can be established by using the past observations, as well as confidence intervals
on each coefficient in 1/

√
Ti. The UCB algorithm instructs to pick the action

with the smallest lower confidence estimate µ
t,i

for the loss. This is equivalent

to making a step of size 1/(t+ 1) in the direction of the corner of the simplex e
that minimizes e>µ

t
. Following this intuition, we introduce the UCB Frank-Wolfe

algorithm that uses a proxy of the gradient, penalized by the size of confidence
intervals.
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Input: K, p0 = 1[K]/K, sequence (δt)t≥0;

for t ≥ 0 do
Observe ĝt, noisy estimate of ∇L(pt);
for i ∈ [K] do

Ût,i = ĝti − αt,i(Ti(t), δt)
end

Select πt+1 ∈ argmini∈[K] Ût,i;

Update pt+1 = pt + 1
t+1(eπt+1 − pt)

end

Notice that for any algorithm, the selection of an action πt+1 ∈ [K] at time
step t+ 1 updates the variable p with respect to the following dynamics

(2.1) pt+1 =
(

1− 1

t+ 1

)
pt +

1

t+ 1
eπt+1 = pt +

1

t+ 1
(eπt+1 − pt) .

This is implied by the mechanism of the problem, and is not dependent on the
choice of an algorithm. If the choice of eπt+1 is e?t+1 , the minimizer of s>∇L(pt)
over all s ∈ ∆K , this would precisely be the Frank-Wolfe algorithm with step
size 1/(t+ 1). Inspired by this similarity, our selection rule is driven by the same
principle, using a proxy Ût for ∇L(pt) based on the information up to time t.
Our selection rule is therefore driven by two principles, borrowing from tools in
convex optimization (the Frank-Wolfe algorithm) and classical bandit problems
(Upper-confidence bounds).

The choice of action πt+1 is equivalent to taking eπt+1 ∈ argmins∈∆K
s>Ût.

The computational cost of this procedure is very light, and apart from gradient
computations, it is linear in K at each iteration, with a global cost of order KT .

3. SLOW RATES

In this section we show that when αi is of order 1/
√
Ti, as motivated by the

parametric model of Section 1.2, our algorithm has an approximation error of
order

√
log(T )/T over the very general class of smooth convex functions. We

refer to this as the slow rate. Our analysis is based on the classical study of the
Frank-Wolfe algorithm (see, e.g. [Jag11] and references therein). We consider the
case of C-smooth convex functions on the unit simplex, for which we recall the
definition.

Definition 2 (Smooth functions). For a set D ⊂ IRn, a function f : D → IR
is said to be a C-smooth function if it is differentiable and if its gradient is C-
Lipshitz continuous, i.e. the following holds

‖∇f(x)−∇f(y)‖2 ≤ C‖x− y‖2 , ∀x, y ∈ D .

We denote by FC,K the set of C-smooth convex functions. They attain their
minimum at a point p? ∈ ∆K and their Hessian is uniformly bounded, i.e.
∇2L(p) � CIK , if they are twice differentiable. We establish in this general
setting a slow rate when αi decreases like 1/

√
Ti.
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Theorem 3 (Slow rate). Let L be a C-smooth convex function over the unit
simplex ∆K . For any T ≥ 1, after T steps of the UCB Frank-Wolfe algorithm with
a bandit feedback such that αt,i(Ti, δ) = 2

√
log(t/δ)/Ti and the choice δt = 1/t2,

it holds that

IE
[
L(pT )

]
− L(p?) ≤ 4

√
3K log(T )

T
+
C log(eT )

T
+
(π2

6
+K

)2‖∇L‖∞ + ‖L‖∞
T

.

The proof draws inspiration from the analysis of the Frank-Wolfe algorithm
with stepsize of 1/(t+ 1) and of the UCB algorithm. Notice that our algorithm is
adaptive to the gradient Lipschitz constant C, and that the leading term of the
error does not depend on it. We also emphasize the fact that the dependency in√
K is expected, and optimal, in bandit setting.
For linear mappings L(p) = p>µ, our analysis is equivalent to studying the

UCB algorithm in multi-armed bandits. The slow rate in Theorem 3 corresponds
to a regret of order

√
KT log(T ), the distribution-independent (or worst case)

performance of UCB. The extra dependency in
√

log(T ) could be reduced to√
log(K) or even optimally to 1 by using confidence intervals more carefully

tailored, for instance by replacing the log(t) term appearing in the definition of the
estimated gradients by log(T/Ti(t)) or log(T/KTi(t)) if the horizon T is known
in advance as in the algorithms MOSS or ETC (see [AB09, PR13, PRCS16]), but
at the cost of a more involved analysis.

Thus, multi-armed bandits provide a lower bound for the approximation error
IE[L(pT )]−L(p?) of order

√
K/T for smooth convex functions. We discuss lower

bounds further in Section 5.
For the sake of clarity, we state all our results when αt,i(Ti, δ) = 2

√
log(t/δ)/Ti,

but our techniques handle more general deviations as αt,i(Ti, δ) =
(
θ log(t/δ)/Ti

)β
where θ ∈ IR and β > 0 are some known parameters. More general results can be
found in the supplementary material.

4. FAST RATES

In this section, we describe situations where the approximation error rate can
be improved to a fast rate of order log(T )/T , when we consider various classes of
functions, with additional assumptions.

4.1 Stochastic multi-armed bandits and functions minimized on vertices

A very natural and well-known - yet illustrative - example of such a restricted
class of functions is simply the case of classical bandits where ∆(i) := µi − µ? is
bounded away from 0 for i 6= ?. Our analysis of the algorithm can be adapted to
this special case with the following result.

Proposition 4. Let L be the linear function p 7→ p>µ. After T steps of
the UCB Frank-Wolfe algorithm with a bandit feedback such that αt,i(Ti, δ) =
2
√

log(t/δ)/Ti, the choices of δt = 1/t2 hold the following

IE[L(pT )]− L(p?) ≤
48 log(T )

T

∑
i 6=?

1

∆(i)
+ 3
(π2

3
+K

)√K‖µ‖∞
T

.



8 BERTHET AND PERCHET

The constants of this proposition are sub-optimal (for instance the 48 can be
reduced up to 2 using more careful but involved analysis). It is provided here
to show that this classical bound on the pseudo-regret in stochastic multi-armed
bandits (see e.g. [BCB12] and references therein) can be recovered with Frank-
Wolfe type of techniques illustrating further the links between bandit problems
and convex optimization [Haz12, SS11]. This result can actually be generalized
to any convex functions which is minimized on a vertex of the simplex with a
gradient whose component-wise differences are bounded away from 0.

Proposition 5. Let L be a convex mapping that attains its minimum on
∆K at a vertex p∗ = ei∗ and such that ∆(i)(L) := ∇iL(p∗) − ∇i∗L(p∗) > 0 for
all i 6= i∗. Then, after T steps of the UCB Frank-Wolfe algorithm with a bandit
feedback such that αt,i(Ti, δ) = 2

√
log(t/δ)/Ti, the choices of δt = 1/t2 hold the

following

IE[L(pT )]−L(p?) ≤ ρ(L)
(48 log(T )

T

∑
i 6=?

1

∆(i)(L)
+
C log(eT )

T
+(
π2

6
+K)

2‖∇L‖∞ + ‖L‖∞
T

)
,

where ρ(L) =
(

1 + CK
∆min(L)

)
and ∆min(L) = mini 6=i? ∆(i)(L).

The KKT conditions imply that ∆(i)(L) ≥ 0 but the strict inequality is not
always guaranteed. In particular, this result may not hold if p∗ is the global
minimum of L over IRK . This type of condition has also been linked with rates
of convergence in stochastic optimization problems [DR16].

The extra multiplicative factor ρ(L) can be large, but it would be of the order
of 1+o(1) using variants of our algorithms with results that holds only with great
probability (typically with confidence bounds of the form 2

√
log(1/δ)/Ti).

4.2 Strongly convex functions

Another classical assumption in convex optimization is strong convexity, as
recalled below. We denote by Sµ,K the set of µ-strongly convex functions of ∆K .
This assumption usually improves the rates in errors of approximation in many
settings, even in stochastic optimization or some settings of online learning (see,
e.g. [PT90, Dip03, ST11, BM13, HKL14, HL14, BP16]). Interestingly enough
though, strong convexity cannot be leveraged to improve rates of convergence in
online convex optimization [Sha13, JNR12], where the 1/

√
T rate of convergence

cannot be improved. Moreover, leveraging strong convexity usually implies to
adapt step size of gradient descents or with linear search and/or away steps for
classical Frank-Wolfe methods. Those techniques cannot be adapted to our setting
where step sizes are fixed.

Definition 6 (Strongly convex functions). For a set D ⊂ IRn, a function
f : D → IR is said to be a µ-strongly convex if for all x, y ∈ D, we have

f(x) ≥ f(y) +∇f(x)>(x− y) +
µ

2
‖x− y‖22 .

We already covered the case where the convex functions are minimized outside
the simplex. We will now assume that the minimum lies in its relative interior.
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Theorem 7. Let L : ∆K → IR be a C-smooth, µ-strongly convex function
such that its minimum p? satisfies dist(p?, ∂∆K) ≥ η, for some η ∈ (0, 1/K].
After T steps of the UCB Frank-Wolfe algorithm with a bandit feedback such that
αt,i(Ti, δ) = 2

√
log(t/δ)/Ti, it holds that, with the choice of δt = 1/t2,

IE[L(pT )]− L(p?) ≤ c1
log2(T )

T
+ c2

log(T )

T
+ c3

1

T
,

for constants c1 = 96K
µη2

, c2 = 24
µη3

+ C and c3 = 24( 20
µη2

)2K + µη2

2 + C.

The proof is based on an improvement in the analysis of the UCB Frank-Wolfe
algorithm, based on a better control on the duality gap, possible in the strongly
convex case. It is a consequence of an inequality due to Lacoste-Julien and Jaggi
(Lemma 2 in [LJJ13]). In order to get the result, we adapt these ideas to a
case of unknown gradient, with bandit feedback. We note that this approach is
similar to the one in [LWM15] that focuses on stochastic optimization problems,
as discussed in Section 1.4.

Our framework is more complicated in some aspects than typical settings in
stochastic optimization, where strong assumptions can usually be made over the
noisy gradient feedback. These include stochastic gradients that are independent
unbiased estimates of the true gradient, or with error terms that are decreasing
in t. Here, such properties do not hold: as an example, in a parametric setting,
information is only obtained about one of the coefficients, and there are strong
dependencies between successive gradients feedbacks. Dealing with these aspects,
as well as the fact that our gradient proxy is penalized by the size of the confidence
intervals, are some of the main challenges of the proof.

4.3 Interior-smooth functions

Many interesting examples of bandit optimization are not exactly covered by
the case of functions that are C-smooth on the whole unit simplex. In partic-
ular, for several applications, the function diverges at its boundary, as in the
examples of Cobb-Douglas utility maximization and variance minimization from
Section 1.3. Recall the the loss was defined by

IE[‖θ̂ − θ‖22] =
∑

i∈[K]
σ2
i
Ti

= 1
T L(p) = 1

T

∑
i∈[K]

σ2
i
pi
.

The gradient Lipschitz constant is infinite but if we knew for instance that
σi ∈ [σi , σi], we could safely sample first each arm i a linear number of time
because p?i ≥ pi := σi/

∑
j σj . We would have (pt)i ≥ pi at all stages and our

analysis holds with the constant C = 2σ2
max(

∑
j σj)

3/σ3
min .

Even without knowledge on σ2
i , it is possible to quickly have rough estimates, as

illustrated by Lemma 13 in the appendix. Only a logarithmic number of sample of
each action are needed. Once they are gathered, one can keep sampling each arm
a linear number of times, as suggested when the lower/upper bounds are known
beforehand. This leads to a Lipchitz constant C = (9

∑
j σj)

3/σmin, which is, up
to to a multiplicative factor, the gradient Lipschitz constant at the minimum.
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5. LOWER BOUNDS

The results shown in Sections 3 and 4 exhibit different theoretical guarantees
for our algorithm depending on the class of function considered. We discuss here
the optimality of these results.

5.1 Slow rate lower bound

In Theorem 3, we show a slow rate of order
√
K log(T )/T for the error approx-

imation of our algorithm over the class of C-smooth convex functions of IRK . Up
to the logarithmic term, this result is optimal: no algorithm based on the same
feedback can significantly improve the rate of approximation. This is a conse-
quence of the following theorem, a direct corollary of a result by [ACBFS02].

Theorem 8. For any algorithm based on a bandit feedback such that αt,i(Ti, δ) =√
2 log(t/δ)/Ti and that outputs p̂T , we have over the class of linear forms LK

that for some constant c > 0

inf
p̂T

sup
L∈LK

{
IE[L(p̂T )]− L(p?)

}
≥ c
√
K/T .

This result is established over the class of linear functions over the simplex (for
which C = 0), when the feedback consists of a draw from a distribution with mean
µi. As mentioned in Section 3, the extra logarithmic term in our upper bound
comes from our algorithm, which has the same behavior as UCB. Nevertheless,
as mentioned before, modifying our algorithm to recover the behavior of MOSS
[AB09], or even ETC, (see e.g. [PR13, PRCS16]), would improve the upper bound
and remove the logarithmic term.

5.2 Fast rate lower bound

We have shown that in the case of strongly convex smooth functions, there is an
approximation error upper bound of order (K/η4) log(T )/T for the performance
of our algorithm, where η ≤ 1/K. We provide a lower bound over this class of
functions in the following theorem.

Theorem 9. For any algorithm with a bandit feedback such that αt,i(Ti, δ) =√
2 log(t/δ)/Ti and output p̂T , we have over the class S1,K of 1-strongly convex

functions that for some constant c > 0

inf
p̂

sup
L∈S1,K

{
IE[L(p̂T )]− L(p?)

}
≥ cK2/T .

The proof relies on the complexity of minimizing quadratic functions 1
2‖p−θ‖

2
2

when observing a draw from distribution with mean θi. Our upper bound is in
the best case of order K5 log(T )/T , as η ≤ 1/K. Understanding more precisely
the optimal rate is an interesting venue for future research.

5.3 Mixed feedbacks lower bound

In our analysis of this problem, we have only considered settings where the
feedback upon choosing action i gives information about the i-th coefficient of
the gradient. The two following cases show that even in simple settings, our upper
bounds will not hold if the relationship between action and feedback is different,
when the feedback corresponds to another coefficient.
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Proposition 10. For L in the class of 1-strongly convex functions on ∆3,
we have in the case of a mixed bandit feedback that

inf
p̂

sup
L∈S1,3

{
IE[L(p̂T )]− L(p?)

}
≥ c/T 2/3 .

For strongly convex functions, even with K = 3, there are therefore pathologi-
cal mixed feedback settings where the error is at least of order 1/T 2/3 instead of
1/T . The case of smooth convex functions is covered by the existing lower bounds
for the problem of partial monitoring [CBLS06], and gives a lower bound of order
1/T 1/3 instead of 1/

√
T .

Proposition 11. For L in the class of linear forms F3 on ∆3, with a mixed
bandit feedback we have

inf
p̂

sup
L∈F3

{
IE[L(p̂T )]− Lθ(p?)

}
≥ c/T 1/3 .

6. DISCUSSION

We study the online minimization of stochastic global loss with a bandit feed-
back. This is naturally motivated by many applications with a parametric setting,
and tradeoffs between exploration and exploitation. The UCB Frank-Wolfe algo-
rithm performs optimally in a generic setting.

The fast rates of convergence obtained for some clases of functions are a signif-
icant improvement over the slow rates that hold for smooth convex functions. In
bandit-type problems similar to our problem, it is not always possible to leverage
additional assumptions such as strong convexity: It has been proved impossible in
the closely related setting of online convex optimization [JNR12, Sha13]. When
it is possible, step sizes must usually depend on the strong convexity parameter,
as in gradient descent [Nes03]. This is not the case here, where the step size is
fixed by the mechanics of the problem. We have also shown that fast rates are
possible without requiring strong convexity, with a gap condition on the gradient
at an extreme point, more commonly associated with bandit problems.

We mention that several extensions of our models, motivated by heterogenous
estimations, are quite interesting but out of scope. For instance, assume an ex-
perimentalist can chose one of K known covariates Xi in order to estimate an
unknown β ∈ IRK , and observes yt = X>πt(β+ξt), where ξt ∼ N (0,Σ). Variants of
that problem with covariates or contexts [PR13] can also be considered. Assume
for instance that µi(.) and σ2

i (.) are regular functions of covariates ω ∈ IRd. The
objective is to estimate all the functions µi(.).
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APPENDIX A: PROOFS

Lemma 12. Let L be a C-smooth convex function over the unit simplex ∆K .
For any T ≥ 1, after T steps of the UCB Frank-Wolfe algorithm, it holds that

L(pT )− L(p?) ≤
1

T

T∑
t=1

εt +
C log(eT )

T
,

where εt+1 = (eπt+1 − e?t+1)>∇L(pt) is the error compared to Frank-Wolfe with
explicit, known and observed gradients, i.e., e?t+1 = argmaxp∈∆K

p>∇L(pt).

Remark: If we denote by ‖L‖∞ = supp∈∆K
L(p) and ‖∇L‖∞ = supp∈∆K

‖∇L(p)‖,
then the same statements would hold with (t+1)‖L‖∞ or 2‖∇L‖∞+‖L‖∞ instead
of εt.

Proof of Lemma 12. We apply the update equation in (2.1) and follow the
usual analysis of Frank-Wolfe in the absence of noise. We denote by ρt the ap-
proximation error at any time t

ρt+1 := L(pt+1)− L(p?) = L(pt +
1

t+ 1
(eπt+1 − pt))− L(p?)

By definition of e?t, C-smoothness and finally convexity of L, we obtain

ρt+1 = L(pt)− L(p?) +
1

t+ 1
∇L(pt)

>(e?t+1 − pt) +
C

(t+ 1)2
+

1

t+ 1
∇L(pt)

>(eπt+1 − e?t+1)

≤ (1− 1

t+ 1
)
[
L(pt)− L(p?)

]
+

1

t+ 1
∇L(pt)

>(eπt+1 − e?t+1) +
C

(t+ 1)2

Finally, introducing the notation εt and multiplying by (t+ 1), we get

(t+ 1)ρt+1 ≤ tρt + εt+1 +
C

(t+ 1)
.

Summing from 1 to T yields the desired result.

Proof of Theorem 3. We use the result of Lemma 12, which yields

L(pT )− L(p?) ≤
1

T

T∑
t=1

εt +
C log(eT )

T
.

We recall that εt is the error due to the lack of information on the gradient at
step t, and we have

εt+1 := (eπt+1 − e?t+1)>∇L(pt) = ∇πt+1L(pt)−∇?t+1L(pt) .

The difference between the two coefficients of the gradient can be controlled by
using the definition of our selection rule, and the relationship between ∇L(pt)
and ĝt, similarly to the analysis of the UCB algorithm for multi-armed bandit
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problems. Indeed, by definition of ĝt, we have that with probability at least 1−δt,
conditionally to the history

∇πt+1L(pt) ≤ ĝt,πt+1 + αt,πt+1(Tπt+1(t), δt+1)

≤
(
ĝt,πt+1 − αt,πt+1(Tπt+1(t), δt+1)

)
+ 2αt,πt+1(Tπt+1(t), δt+1)

≤
(
ĝt,?t+1 − αt,?t+1(Tπt+1(t), δt+1)

)
+ 2αt,πt+1(Tπt+1(t), δt+1)

≤ ∇?t+1L(pt) + 2αt,πt+1(Tπt+1(t), δt+1) ,

as Ûπt+1 ≤ Û?t+1 by the definition of our selection rule. With probability δt+1, we
also have that εt+1 ≤ 2‖∇L‖∞ + ‖L‖∞. As a consequence, this yields

IEεt+1 ≤ 2αt,πt+1(Tπt+1(t), δt+1) + δt+1(2‖∇L‖∞ + ‖L‖∞) .

We now bound the approximation error as a function of the precision of the
estimate ĝt. Using the above inequality, we get, by denoting λ := 2‖∇L‖∞+‖L‖∞,

IE

T∑
t=1

εt ≤ Kλ+ IE

T∑
t=K+1

2αt,πt(Tπt(t− 1), δt) +
λ

t2
≤ 2IE

T∑
t=K+1

√
6 log(t)

Tπt(t− 1)
+
(
K +

π2

6

)
λ

≤ 2IE

K∑
i=1

Ti(T−1)∑
s=1

√
6 log(T )

s
+
(
K +

π2

6

)
λ ≤ 4IE

K∑
i=1

√
3Ti(T ) log(T ) +

(
K +

π2

6

)
λ .

We used the fact that the algorithm necessarily select actions in a round robin
fashion during the first K stages.

Applying Cauchy-Schwarz inequality and the fact that
∑

i Ti(t) = t yield the
desired result.

Proof of Proposition 4. We adapt the proof of Theorem 3, using that
C = 0 and that εt = 0 whenever πt = ?t = ?. We obtained that

IET (L(pT )− L(p?)) ≤ 4IE
K∑
i=1

√
3Ti(T ) log(T ) +

(π2

6
+K

)
λ

However, in this particular case, we have T (L(pT ) − L(p?)) =
∑

i 6=? ∆i Ti. We
therefore obtain

IE
∑
i 6=?

∆i Ti ≤ 4
√

3
√

log(T )IE
∑
i 6=?

√
Ti+

(π2

6
+K

)
λ ≤

(∑
i 6=?

48 log(T )

∆i

)1/2

IE
(∑
i 6=?

∆i Ti

)1/2
+
(π2

6
+K

)
λ ,

by Cauchy-Schwarz inequality. Standard algebra yields

IEL(pT )− L(p?) = IE
1

T

∑
i 6=?

∆i Ti ≤
48 log(T )

T

∑
i 6=?

1

∆i
+ 2
(π2

6
+K

)
λ

of Proposition 4. We adapt again the proof of Theorem 3. First of all, no-
tice that εt ≤ 0 whenever πt = i?, so that we obtain the following equation

IET
(
L(pT )− L(p?)

)
≤ 4IE

∑
i 6=i?

√
3Ti(T ) log(T ) +

(
K +

π2

6

)
λ+ C log(eT ) .
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Using the fact that L is Lipschitz and that p? = ei? , it also holds that

T
(
L(pT )− L(p?)

)
≥ T

(
pT − p?

)>∇L(p?) =
∑
i 6=i?

Ti∆i(L)

Cauchy-Schwartz inequality yields again that

IE
∑
i 6=i?

Ti∆i(L) ≤ 48
∑
i 6=i?

log(T )

∆i(L)
+ 2
(
K +

π2

6

)
λ+ 2C log(eT )

It remains to lower bound the lhs by the regret. Since L is C-smooth, we get also
that

T
(
L(pT )− L(p?)

)
≤ T

(
pT − p?

)>∇L(p?) + CT‖pT − p?|‖2

=
∑
i 6=i?

Ti∆i(L) +
C

T

∑
i 6=i∗

T 2
i +

C

T

(∑
i 6=i∗

Ti
)2

≤
∑
i 6=i?

Ti∆i(L) +
CK

T

∑
i 6=i∗

T 2
i .

As a consequence, it remains to compute a quantity γ such that

IE
∑
i 6=i?

Ti∆i(L) +
CK

T

∑
i 6=i∗

T 2
i ≤ γIE

∑
i 6=i?

Ti∆i(L)

or at least that for all i 6= i?

CK

T
IET 2

i ≤ (γ − 1)IETi∆i(L),

in particular this is ensured for γ = 1 + c(1+K)
min ∆i(L) which gives the result.

Proof of Theorems 7. Recall that we assumed than on top of being smooth
(C-Lipschitz gradient), the mapping L is µ-strongly convex and minimized in the
relative interior of the simplex. Let η be the distance of p? to the relative boundary
of the simplex then the following Lemma due to [LJJ13] yields

∇L(pt)
>(pt − e?t+1) ≥

√
2µη2

√
L(pt)− L(p?) and C ≥ µη2

This implies that

L(pt+1)− L(p?) = L(pt)− L(p?) +
1

t+ 1
∇L(pt)

>(e?t+1 − pt) +
C

(t+ 1)2
+

1

t+ 1
∇L(pt)

>(eπt+1 − e?t+1)

≤ L(pt)− L(p?)−
√

2µη2

t+ 1

√
L(pt)− L(p?) +

C

(t+ 1)2
+
εt+1

t+ 1

To ease up reading, we introduce the notations, α =
√

2µη2 and and ρt =
L(pt)− L(p?) so that the previous equation rewrites in

ρt+1 ≤ ρt − α
√
ρt

t+ 1
+

C

(t+ 1)2
+
εt+1

t+ 1
,
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which rewrites again, using the function ψ(x) = x2 − αx, into

(t+ 1)ρt+1 ≤ tρt +
[
ψ(
√
ρt)− ψ(

εt+1

α
)
]

+
ε2
t+1

α2
+

C

t+ 1
.

Recall that we still have the guarantee that ρt ≤
∑t
s=1 εs+

C
s+1

t , but we aim at
proving some fast rates of convergence, of the type

IE ρT ≤ O
(∑

s IEε2
s

T

)
.

Assume for the moment that ρT ≥ α2

4 , then Cauchy-Schwarz inequality implies
that( T∑

s=1

εs +
C

s+ 1

)2
≤ T

T∑
s=1

(εs +
C

s+ 1
)2 ≤ 4

α2

T∑
s=1

(εs +
C

s+ 1
)
T∑
s=1

(ε+
C

s+ 1
)2

≤
T∑
s=1

(ε+
C

s+ 1
)

8

α2

( T∑
s=1

ε2
s +

C2π2

6

)
,

and thus

(A.1) ρT ≤
∑T

s=1 εs + C
s+1

T
≤ 8

α2

∑T
s=1 ε

2
s

T
+

14C2

α2

1

T

As a consequence, the claim holds if ρT ≥ α2/4 and we will, from now on, assume
that ρT ≤ α2/4.

We denote by τ0 the last time before T where ρτ ≥ α2/4 and we now consider
several cases for the remaining of the proof.

Case1. If we can prove that
∑t
s=1 ε

2
s

t ≥ ε2
t+1, for example if εt is guar-

anteed to decrease
Then, for any t ≥ τ0, we get that if ρt ≥ 1

α2

∑t
s=1 ε

2
s

t ≥ εt+1

α2 ( by assumption),
then

(t+ 1)ρt+1 ≤ tρt +
ε2
t+1

α2
+

C

t+ 1
.

Thus, if we denote by τ1 the last time where ρτ <
1
α2

∑τ
s=1 ε

2
s

τ , we obtain that,
as long as τ1 ≥ τ0,

TρT ≤ τ1ρτ1 + ετ1+1 +
1

α2

T∑
s=τ1+2

ε2
s +

C

s+ 1

≤ 1

α2

T∑
s=1

ε2
s + ετ1+1 −

ε2
τ1+1

α2
+ C log(eT )

which gives the result we wanted as

(A.2) TρT ≤
1

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT )
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On the contrary, if τ0 ≥ τ1, then the same computations give

TρT ≤ τ0ρτ0 +
α2

4
+

1

α2

T∑
s=τ0+1

ε2
s +

C

s+ 1

Using the fact that δτ0 ≥ α2/4, we also have that

τ0δτ0 ≤
8

α2

τ0∑
s=1

ε2
s +

14C2

α2

thus, combining the two cases τ1 ≥ τ0 and τ0 ≤ τ1, we now obtain that

(A.3) TρT ≤
8

α2

T∑
s=1

ε2
s +

14C2

α2
+
α2

4
+ C log(eT )

Case 2. If it is not necessarily true that
∑t
s=1 ε

2
s

t ≥ ε2
t , for example if

εt does not necessarily decrease or can make big jumps
Notice first that if ε2

α2 ≤ ρt ≤ α2

4 , the latter holding because of t ≥ τ0, then one
has

(t+ 1)ρt+1 ≤ tρt +
ε2
t+1

α2
+

C

t+ 1
.

As a consequence, denoting by τ2 the last stage before T such that ρτ <
ε2τ
α2

and assuming that τ2 ≥ τ0, we obtain following the same computations as before
that

(A.4) tρt ≤
τ2ε

2
τ2

α2
+

1

α2

t∑
s=τ2+1

ε2
s +

α2

4
+ C log(et) .

If τ2 ≤ τ0, then we get that

TρT ≤ τ0ρτ0 +
1

α2

T∑
s=τ0+1

ε2
s +

α2

4
+ C log(eT )

thus

(A.5) TρT ≤
8

α2

T∑
s=1

ε2
s +

14C2

α2
+
α2

4
+ C log(eT ),

which was our objective. Hence it only remains to upper-bound τ2ε
2
τ2 in Equation

(A.4), i.e., when τ2 ≥ τ0. To do that, we are going to use a second time the
assumptions on L.

Since we assumed that L was µ-strongly convex and minimized in the interior
of the simplex, it holds that

‖pt − p∗‖2 ≤
1

µ

(
L(pt)− L(p∗)

)
≤ 1

µ

∑t
s=1 εs
t
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As a consequence, this yields that

pi∗ −

√
1

µ

∑t
s=1 εs
t

≤ pit ≤ pi∗ +

√
1

µ

∑t
s=1 εs
t

We are now going to make the assumption that the horizon T is known in

advance, and that εs ≤
(

log(T/δ)
Tπs (s−1)

)β
with probability at least 1 − δγ , for some

β ≤ 1/2 and γ > 0. This implies, by the union bound, that with probability at
least 1− TKδγ ,

1

t

t∑
s=1

εs ≤
1

1− β

(K log(T/δ)

t

)β
,

hence

tpi∗ − t

√
1

µ

1

1− β

(K log(T/δ)

t

)β
≤ Ti(t) ≤ tpi∗ + t

√
1

µ

1

1− β

(K log(T/δ)

t

)β
in particular, if K log(T/δ)

t ≤
(
µ(1− β)η

2

4

)1/β
, i.e., if t ≥ τδ := K log(T/δ)

(µ(1−β) η
2

4
)1/β

,

tδ

2
≤ tpi∗

2
≤ Ti(t) ≤

3tpi∗
2

and thus,

tε2
t ≤ t

( log(T/δ)

tη/2

)2β
≤
(2 log(T/δ)

η

)2β
t1−2β ≤

(2 log(T/δ)

η

)2β
T 1−2β, ∀t ≥ τδ.

Concluding.
To wrap things up, we consider the three different cases. With probability at

least 1− TKδγ ,

If τ2 ≤ τ0 then: we have proved that

TρT ≤
8

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT )

If τ0 ≤ τδ ≤ τ2 then: using the above upper-bound on τ2ε
2
τ2 , we get

TρT ≤
1

α2

(2 log(T/δ)

η

)2β
T 1−2β +

1

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT ) .

If τ0 ≤ τ2 ≤ τδ then: going back to the original induction yields

TρT ≤ τδρτδ +
1

α2

T∑
s=1

ε2
s +

α2

4
+ C log(eT ) .

Taking the maximum of all those terms gives that, with probability at least
1− TKδγ ,
(A.6)

ρT ≤
log(T/δ)

T

K‖L‖∞
(µ(1− β)η

2

4 )1/β
+

1

α2

(2 log(T/δ)

ηT

)2β
+

8

α2

1

T

T∑
s=1

ε2
s+

α2

4T
+
C log(eT )

T
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A simple sommation over t yields that,

1

T

∑
ε2
s ≤

1

T

∑( log(T/δ)

Ti(s)

)2β
≤ 1

1− 2β

(K log(T/δ)

T

)2β
if β <

1

2

and

1

T

∑
ε2
s ≤

1

T

∑ log(T/δ)

Ti(s)
≤ K log(T/δ) log(T )

T
if β =

1

2

As a consequence, if β < 1/2

IEρT ≤ δγTK‖L‖∞ +
log(T/δ)

T

K‖L‖∞
(µ(1− β)η

2

4 )1/β
+

1

α2

( log(T/δ)

T

)2β[22β

η2β
+

8K2β

1− 2β

]
+
α2

4T
+
C log(eT )

T

and if β = 1/2

IEρT ≤ δγTK‖L‖∞ +
log(T/δ)

T

[K‖L‖∞
(µη

2

8 )2
+

2

α2η

]
+

1

α2

K log(T/δ) log(T )

T
+
α2

4T
+
C log(eT )

T

choosing δγ = T−(2β+1) yields that, if β < 1
2 ,

IEL(pT )− L(p?) ≤ c1,β
log(T )

T 2β
+ c2,β

( log(T )

T

)2β
+
c3,β

T 2β

where

c1,β =
2(β + 1)K‖L‖∞
γ(µ(1− β)η

2

4 )1/β
+C, c2,β =

1

α2

(2(β + 1)

γ

)2β[22β

η2β
+

8K2β

1− 2β

]
, c3,β = K‖L‖∞+

α2

4
+C.

For β = 1/2, the choice of δγ = T−2 yields

IEL(pT )− L(p?) ≤ c1
log2(T )

T
+ c2

log(T )

T
+ c3

1

T

where

c1 =
3K

γα2
, c2 =

3

γα2

[K‖L‖∞
(µη

2

8 )2
+

2

α2η

]
+ C, c3 = K‖L‖∞ +

α2

4
+ C.

Remark: We assumed that the horizon T was known. If it is not the case,
there are two possible ways to deal with that issue to get an anytime algorithm

Use the Doubling Trick in the algorithm: The doubling trick is rather clas-
sical in online learning, and it consists in running several successive and
independent instances of the same algorithm on block of stages of length
that increases sufficiently fast enough (so that the error incurred on the
first blocks disappears while averaging), but not too fast enough (so that
the error during the last block is compensated by the small error cumulated
so far on the previous blocks). Its main advantages are that it is simple to
describe, to analyze and that it gives the same guarantees of the known
horizon, up to some multiplicative constant. The latter depends on the
speed of convergence achieved in the known horizon, and it might require
careful tuning. The main drawback of the doubling trick is that it regularly
discards all the past data and forgets the learning done so far.

In our setting, the correct size of blocks are proportional to Tj = e
( 1
1−β )j

.
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Use the Doubling Trick in the analysis. Instead of using the doubling trick
in the algorithm, we will prove in the following that we can somehow use
it in the analysis of the anytime variant of the algorithm. We first consider
the case where β = 1/2, and we assume that it holds that, for some fixed

θ > 0 and for every s ∈ IN, εs ≤
(
θ log(s)
Ti(s)

)β
with probability at least 1− 1

s6
.

The immediate consequence of that property is that

1

T
IE

T∑
s=1

ε2
s ≤

1

T
IE

T∑
s=1

(θ log(T )

Ti(s)

)2β
+

1

s6
≤ 2

1− 2β

(Kθ log(T )

T

)2β 1

T

where the last inequality is loose for β < 1/2 and

1

T
IE

T∑
s=1

ε2
s ≤

1

T
IE

T∑
s=1

θ log(T )

Ti(s)
+

1

s6
≤ 2

Kθ log2(T )

T

for β = 1/2.

In order to upper-bound IEτ2ε
2
τ2 , we are going to decompose the set of stages

in blocks Bj = {t ∈ [Tj−1 + 1, Tj ]} where Tj = be( 1
1−β )jc. As a consequence:

P
{
∀k ≤ K,∀s ∈ Bj , εks ≤

(θ log(s)

Tk(s)

)β}
≥ 1−K

∑
s∈Bj

1

s5
=: 1− pj .

Hence, with probability at least 1−(pj+pj+1), it holds that for all t ∈ Bj+1

1

t

t∑
s=1

εs ≤
Tj−1

t
+

1

t

t∑
s=Tj−1+1

(θ log(s)

Tis(s)

)β
≤ 1

tβ
+

2

1− β

(Kθ log(t)

t

)β
,

since t ≥ Tj + 1 ≥ T
1

1−β
j−1 .

Following the same argument as in the case where the horizon was known,
this implies that with probability at least 1− (pi + pi+1), for all t ∈ Bi+1,

T it ≥ tpi? − t

√
1

µ

( 1

tβ
+

2

1− β

(Kθ log(t)

t

)β)
.

In particular, let τβ,? be such that

√
1
µ

(
1
tβ

+ 2
1−β

(
Kθ log(t)

t

)β)
≤ η

2 for all

t ≥ τβ,? and jβ,? be the index of the block to which τβ,? belongs. Then we
have that

∀j ≥ jβ,?, P
{
∀t ∈ Bj+1, tε

2
t ≤

(2θ log(t)

δ

)2β
t1−2β

}
≥ 1− (pj + pj+1)

It follows that

IEτ2ε
2
τ21{τ2 ≥ Tj?} ≤

(2θ log(t)

η

)2β
t1−2β+

∑
j=j∗

Tj+1(pj+pj+1) ≤ 2
(2θ log(t)

η

)2β
t1−2β,
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where, again, the last inequality is loose but compact. This yields the any-
time version of the previous theorem, that, for β < 1/2

∀t ∈ N, IEL(pt)− L(p?) ≤ c′1,β
( log(t)

t

)2β
+ c′2,β

log(t)

t
+ c′3,β

1

t

with c′1,β = 2
α2

(
2θ
η

)2β
+ 8

α2
2

1−2β

(
Kθ
)2β

, c′2,β = C and c′3,β = Tjβ,?‖L‖∞ +
α2

4 + C.
For β = 1/2, we get

∀t ∈ N, IEL(pt)− L(p?) ≤ c′1
log2(t)

t
+ c2

log(t)

t
+ c3

1

t
,

where c′1 = 16Kθ
α2 , c′2 = 4θ

ηα2 + C and c′3 = Tj1/2,?‖L‖∞ + α2

4 + C.

Lemma 13. Let Zs, s ∈ {1, . . . , T} be i.i.d. random variable in [0, 1] of ex-
pectation IEZs = Z, then, with probability at least 1 − δ, Z ≥ Zτ/2 where the
random stage τ ≤ T is the first such that Zτ ≥

√
2 log(2T/δ)/τ . As, it also holds

that Zτ ≥ Z −
√

2 log(T/δ)
2t , thus 3Zτ/2 ≥ Z, we get that

Zτ/2 ≤ Z ≤ 3Zτ/2, for some random τ ≤ 9 log(2T/δ)/(2Z2) + 1

This lemma is a direct consequence of Hoeffding’s inequalty.

Proof of Theorem 9. Let ν ∈ (0, 1/29), K > 64 log(2)/ν and T > 4ν2K4.
We assume for simplicity that K is even. For θ ∈ ∆K , we consider Lθ(p) =
µ
2‖p − θ‖

2. We treat first the case of µ = 1. For all ε ∈ {−1, 1}K/2, we consider
the vector θε such that for all i ∈ [K/2]

θε,2i−1 =
1

K
+ εi

√
νK

T
and θε,2i =

1

K
− εi

√
νK

T
.

Note that for all ε ∈ {−1, 1}K/2, p?ε = θε ∈ ∆K and that ∇Lθ(p) = p − θ,
so that an observation from N (θi, 1) for the i-th action constitutes a bandit
feedback for the i-th coefficient of the gradient with deviation bound α(Ti, δ) =√

2 log(1/δ)/Ti.
LetM be a subset of {−1, 1}K/2 such that for all ε, ε′ ∈M, we have ρ(ε, ε′) ≥

K/8 and for which log(|M|) ≥ K/64, whose existence is guaranteed by the
Varshamov-Gilbert lemma. We have for ε, ε′ ∈M that ν/4 ·K2T ≤ ‖θε− θε′‖22 ≤
νK2/T . We consider the subsets Cε of the unit simplex defined by

Cε =
{
p ∈ ∆K : ‖p− θε‖22 <

ν

16

K2

T

}
.

By construction of M, these sets are disjoint.
For any algorithm, on the events where Tj(T ) > 2T/K > T/K + 2

√
νK2T

for some j ∈ K we have that p̂T /∈ Cε. On the events for which Tj(T ) ≤ 2T/K
for all j ∈ [K], we have that p̂T can only depend (possibly in a random man-
ner) on an observation from N⊗N (θε, IK), where N ≤ 2T/K. We have that
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KL(N⊗N (θε, IK),N⊗N (θε′ , IK)) = N‖θε−θε′‖22 ≤ νNK2/T ≤ 2νK. Considering
together these two events, we obtain as a consequence of Fano’s inequality that

inf
p̂

max
ε∈M

Pε(p̂T /∈ Cε) ≥ 1− 2νK + log(2)

K/64
≥ 1− 129ν ,

As a consequence, we have that

inf
p̂

max
ε∈M

{
IE[Lθε(p̂T )]− Lθε(p?ε)

}
≥ 1

2
(1− 129ν)

ν

16

K2

T
,

which yields the desired result.

Proof of Proposition 11. For θ ∈ [1/3, 2/3], take the class of functions
Lθ : IR3 → IR

Lθ(p) =
1

2

(
p1 − θ

)2
+

1

2

(
p2 − (1− θ)

)2
+

1

2
p2

3 .

Consider the case where the mixed feedback for the three actions are drawings
from respectively N (0, 1),N (0, 1), and N (θ, 1). We consider the set

Cθ =
{
p ∈ ∆3 : ‖p− p?θ‖22 ≤

c

T 2/3

}
.

For any algorithm, on the event where T3(T ) > T 2/3, we have ‖pT−p?θ‖22 ≥ 1/T 2/3

and pT /∈ Cθ. On the event where T3 ≤ T 2/3, we have that p̂T can only depend
on a drawing from N⊗N (θ, 1), where N ≤ T 2/3. In this case, we have that

inf
p̂

sup
θ∈[1/3,2/3]

IEθ[(p̂T,1 − θ)2] ≥ c′

N
.

Overall this yields the desired result.
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