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Abstract. We study the detection problem of finding planted solutions
in random instances of flat satisfiability problems, a generalization of
boolean satisfiability formulas. We describe the properties of random
instances of flat satisfiability, as well of the optimal rates of detection
of the associated hypothesis testing problem. We also study the perfor-
mance of an algorithmically efficient testing procedure. We introduce
a modification of our model, the light planting of solutions, and show
that it is as hard as the problem of learning parity with noise. This
hints strongly at the difficulty of detecting planted flat satisfiability for
a wide class of tests.
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1. INTRODUCTION

The rapid growth in many scientific fields of the size of typical datasets, and
the increasingly complex models that are studied, have naturally brought forth
the notions of statistical and computational complexity in learning theory. For
many learning problems motivated by such applications, the algorithmic aspect
of inference procedures cannot be ignored: it is necessary to consider jointly the
difficulties posed by the presence of noise or random errors, and by computational
hardness.

The problem of understanding the tradeoffs between algorithmic and statis-
tical efficiency, has therefore attracted a lot of interest. A particularly success-
ful approach has been to investigate the links between learning problems that
naturally arise, inspired by applications, and more abstract problems related
to random discrete structures, that have been extensively studied in theoretical
computer science. An hypothesis of [Fei02], based on the hardness of refuting
satisfiability in random satisfiability formulas - initially used to prove hardness
of approximation for several problems - has been used as a primitive to show
hardness of improper learning [DLSS12, DLSS13, LSSS14]. An hypothesis on
the planted clique problem has also been used as a primitive to prove compu-
tational limits to inference, initially for sparse principal component detection
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in [BR13], and subsequently for other problems in high dimensional statistics
[MW13, Che13, WBS14, GMZ15, CLR15].

The desire to understand barriers to learning that come from randomness and
computation has therefore brought attention to these problems, and the ques-
tions of learning distributions of their instances, in a computationally efficient
manner. Examples include [FGR+13, FPV13, FK14, FPV14], investigating the
query complexity of statistical algorithms for these problems [Kea98], or [Ber14]
treating the problem of satisfiability detection as an hypothesis testing problem.

We consider here a learning problem on sets of flats in F
n
2 , shown to be a

generalization of the k-SAT problem in n variables. We introduce the k-FLAT
problem over sets of m flats of dimension n−k, that are flat satisfiable if they do
not cover all of Fn2 . This is analogous to satisfiability formulas, that are satisfiable
if the m clauses do not exclude all the assignments. We also introduce a learning
problem over these instances. It is formulated as a high-dimensional inference
problem of hypothesis testing between the uniform distribution and the planted
distribution, where an unknown assignment of F

n
2 is made flat-satisfiable. We

study the optimal rates of detection for this problem, in a minimax sense, based
on various parameters. We show that the optimal sample size m scales linearly
with the dimension n. Even if they are derived considering only information-
theoretic limits, these rates are useful as benchmarks. They give a context to the
performance of candidate algorithms, and let us see if there is a gap between what
we are able to achieve and the best possible case. We introduce a polynomial-
time algorithm for a test, inspired by a technique of [AG11], and show that the
test is successful for a sample of order nk. We discuss how a modification of the
problem, denoted by lightly planted flat satisfiability - that does not significantly
alter it from a purely statistical point of view - affects the computational aspects,
making it as hard as the “Learning Parity with Noise” problem [BKW03]. We
also show how this result strongly suggests that a wide class of testing methods
cannot be used for detection of planted solutions for flat satisfiability.

This article is structured in the following manner: Section 2 is focused on
the description of these problems. We introduce the k-FLAT problem, and the
associated problem of detecting planted solutions. In Section 3, we show that there
exists a sharp phase transition for flat satisfiability of random instances, with a
threshold at an explicit constant ∆ in the linear regime m = ∆n. In Section 4, we
use this result to derive the optimal rate of detection, with an optimal constant,
that coincides with the flat satisfiability transition. In Section 5, we show that a
test that can be computed in polynomial time will be successful with a sample
size that is polynomial in n. We introduce in Section 6 the problem of detecting
a lightly planted solution, for which we describe optimal rates of detection, and
discuss computational aspects.

2. PROBLEM DESCRIPTION

2.1 The k-FLAT problem

Consider F
n
2 , the n-dimensional coordinate space on F2. We are given V =

(V1, . . . , Vm), a collection ofm flats of dimension n−k, or k-flats on F
n
2 . We denote

by k-FLAT the problem of determining whether there exists an element x ∈ F
n
2

that is flat satisfying, i.e. that does not lie on any of the Vj , or alternatively,
whether F

n
2 = ∪jVj . We can define the flats by taking k linearly independent
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linear forms ℓj,1, . . . , ℓj,k and k values εj,1, . . . , εj,k ∈ F2, and having

Vj = {x ∈ F
n
2 : ℓj,i(x) = εj,i , ∀i ∈ [k]} .

We note that there are many such descriptions for any flat, but choosing the
ℓj,i and εj,i uniformly at random does yield the uniform distribution on flats. We
also note that if we constrain the flats to be coordinate-aligned by taking each
linear form among the projections on one of the eis, the Vj can be interpreted
as satisfiability clauses on k literals, and the set V1, . . . , Vm a satisfiability for-
mula with m clauses: For each x ∈ F

n
2 , x satisfies the j-th clause if and only if

x /∈ Vj , and satisfies the formula if and only if it the case for all the Vj . The
set of flat satisfying assignments is therefore F

n
2 \ ∪jVj . The problem described

above is therefore a generalization of k satisfiability. Thus, the k-FLAT problem
is NP-complete for k ≥ 3.

We denote by S(V ) the set of flat satisfying elements Fn2 \∪jVj, and by Z(V ) its
cardinality. We write S and Z when it is not ambiguous. We denote by FLAT the
set of V that are flat satisfiable, i.e. for which there exists a satisfying element.
We will consider asymptotics in the linear regime of m = ∆n, for a constant
∆ > 0, and m,n→ +∞.

2.2 Detection of planted flat-satisfiable assignment

Given a random instance V , our goal is to distinguish two hypotheses for its
underlying joint distribution. This detection problem is a generalization of the
problem of detecting planted satisfiability [Ber14]. Under the uniform distribu-
tion (denoted by Punif) the Vjs are independent and identically distributed. Their
distribution is uniform on the set of flats of dimension n−k. A possible way to gen-
erate them is to draw uniformly k linearly independent linear forms ℓj,1, . . . , ℓj,k
and independently k values εj,1, . . . , εj,k ∈ F2, and to define

Vj = {x ∈ F
n
2 : ℓj,i(x) = εj,i , ∀i ∈ [k]} .

Under the planted distribution, (denoted by Pplanted), an element x∗ ∈ F
n
2 is

chosen uniformly. Conditioned on this element, the Vjs are independent and iden-
tically distributed, with a distribution denoted by Px∗ . Under this distribution,
they are chosen uniformly on the set of flats of dimension n−k that do not contain
x∗. They can be generated in a similar manner as under the uniform distribution,
by drawing uniformly k linearly independent linear forms ℓj,1, . . . , ℓj,k, and the
k values εj,i uniformly among the 2k − 1 choices that are not all ℓj,i(x

∗). We
define Vj similarly. By construction, it does not contain x∗, which is a satisfying
assignment for V .

Remark 2.1. Let G be the subgroup of GLn(F2) consisting of linear trans-

formations fixing x∗. Then G acts transitively on the k-flats not containing x∗. In
particular, a probability distribution on k-flats which is supported on k-flats not

containing x∗, and which is invariant under G, must be uniform on the k-flats
not containing x∗; in other words, it is the distribution Px∗ described above. In

particular, the procedure of choosing k linear forms ℓi and k bits εi uniformly at

random subject to the conditions that the ℓi are linearly independent, and that the



4 BERTHET AND ELLENBERG

ℓi(x
∗)−εi is nonzero for at least one i, is evidently G-invariant; thus, the resulting

distribution on k-flats is Px∗. In this paper we will mostly use this description

of Px∗. But we want to emphasize that there are many such descriptions, i.e.

many distributions on k-tuples of pairs (ℓ, ε) which yield the distribution Px∗ on

k-flats. For instance, we could choose the ℓi as above, but then choose an i at
random, require that ℓi(x

∗)−εi = 1, and allow the other k−1 bits εj to be chosen

independently at random. Or we could require ℓi(x
∗) − εi = 1 for all i. Any of

these processes result in a G-invariant distribution on k-flats not containing x∗,
which can only be Px∗.

In order to avoid confusion regarding the representation of these flats, we con-
sider here that the input data is the actual flat, given to us either as a membership
oracle - a function that returns whether any element of Fn2 belongs to the flat Vj
- or as a uniformly random base ℓj of the space of linear forms that are constant
on the flat, and the corresponding values εj . From a purely statistical point of
view, this makes no difference: it is equivalent to consider a membership oracle,
or the finite list of the elements of Vj , or the basis described here. From an algo-
rithmic point of view, we will consider that our data is a uniformly random basis
of linear forms and the associated values (ℓj, εj) for the k-flat, which has then
the distribution described above.

Formally, we denote by q0 the uniform distribution on k-flats of in F
n
2 , and for

all x ∈ F
n
2 by qx the uniform distribution on k-flats of Fn2 , that do not contain

x. With these notations, the distributions considered in this problem are defined
thus

Punif := q⊗m0 , Px,π := q⊗mx , Pplanted :=
1

2n

∑

x∈Fn
2

Px∗ .

Our detection problem can be written as testing between two hypotheses

H0 : V = (V1, . . . , Vm) ∼ Punif

H0 : V = (V1, . . . , Vm) ∼ Pplanted .

3. FLAT-SATISFIABILITY THRESHOLD

In this section, we study the probability that a uniformly random instance V
of the k-FLAT problem is flat satisfiable, when m = ∆n, as a function of ∆ > 0.
This is achieved by studying the first two moments of Z(V ).

Lemma 3.1. Under the uniform distribution

E[Z] = 2n(1− 2−k)m .

Proof. It holds that

Z =
∑

x∈Fn
2

m
∏

i=1

1{x /∈ Vj} .

By linearity, symmetry of the distribution, and independence of the Vj, for any
x0 ∈ F

n
2

E[Z] = 2n(Punif(x0 /∈ V1))
m .

Furthermore, for each k-flat of Fn2 , |V1| = 2n−k, which yields the desired result.
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Lemma 3.2. Let V = (V1, . . . , Vm) be a random collection of m k-flats on F
n
2

with distribution Punif. Let m = ∆n, for some ∆ > 0. We have

E[Z2]

E[Z]2
≤ 1 + o(1) +

1

E[Z]
.

Proof. We derive the second moment of Z

Z2 =
∑

x,x′∈Fn
2

1{x ∈ S(V )}1{x′ ∈ S(V )}

=
∑

x

1{x ∈ S(V )}+
∑

x 6=x′

1{x ∈ S(V )}1{x′ ∈ S(V )} .

Taking expectation yields

E[Z2] = E[Z] +
∑

x 6=x′

Punif

(

{x ∈ S(V )} ∩ {x′ ∈ S(V )}
)

.

The uniform distribution is invariant under the action of GLn(F2), which is dou-
bly transitive on F

n
2 . Therefore, the term Punif

(

{x ∈ S(V )} ∩ {x′ ∈ S(V )}
)

is
constant for all couples of distinct elements (x, x′) of Fn2 . To compute this distri-
bution, it thus suffices to consider that x and x′ are uniformly randomly chosen
among the set of pairs of distinct elements. For all j ∈ [m], this yields

Punif

(

{x /∈ Vj}∩{x′ /∈ Vj}
)

=
2n − 2n−k

2n
·2
n − (2n−k − 1)

2n − 1
= (1−2−k)

(

1−2−k+
2 + 2−k

2n − 1

)

.

Using this in the derivation of the second moment, we have

E[Z2] = E[Z] + (22n − 2n)(1− 2−k)m
(

1− 2−k +
2 + 2−k

2n − 1

)m

≤ E[Z] + 22n(1− 2−k)2m
(

1 +
2 + 2−k

1− 2−k
1

2n − 1

)m

≤ E[Z] +E[Z]2
(

1 +
2 + 2−k

1− 2−k
1

2n − 1

)∆n
.

Note that the last term is a 1 + o(1).

Together, Lemma 3.1 and 3.2 yield the following

Theorem 3.3. For k > 0 let ∆k := log(1/2)/ log(1 − 2−k) ≈ 2k log(2). For
∆ > 0, let m = ∆n, and V be uniformly distributed. When m,n→ +∞, it holds

that

• For ∆ < ∆k, Punif(V ∈ FLAT) → 1.
• For ∆ > ∆k, Punif(V ∈ FLAT) → 0.

Proof. We first note that 2(1− 2−k)∆k = 1, so that E[Z] = [2(1− 2−k)∆]n is
exponentially large when ∆ < ∆k, and exponentially small when ∆ > ∆k.

• For ∆ < ∆k, Markov’s inequality yields

Punif(V ∈ FLAT) = Punif(Z(V ) ≥ 1) ≤ E[Z] → 0 .
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• For ∆ < ∆k, Paley-Zigmund’s inequality and the result of Lemma 3.2 yields

Punif(V ∈ FLAT) = Punif(Z(V ) > 0) ≥ E[Z]2

E[Z2]
→ 1 .

There is therefore a sharp phase transition in the linear regime, at ∆k, where
the limit of the probability of flat satisfiability switches from 1 to 0. This result
can be compared to the satisfiability transition for k-SAT problems, for which
Z has the same expectation, but for which the second moment is much larger
than E[Z]2. The proofs of satisfiability transitions [AP04, COP13, DSS14] are
therefore much more technical.

4. OPTIMAL DETECTION FOR PLANTED FLAT-SATISFIABILITY

One can understand the two distributions by the following generating process.
Let Nk be the number of subspaces of dimension n−k in F

n
2 . There are therefore

2kNk possible k-flats (equivalent to a choice of linear forms, and k values). Under
the uniform distribution, m flats are chosen independently and uniformly among
the 2kNk possible choices. Under Px∗ , there is an excluded choice of values, and
there are (2k − 1)Nk allowed flats, among which we draw independently and
uniformly m flats. This interpretation of the distributions is useful to derive the
likelihood ratio, in the following.

Lemma 4.1. Let V = (V1, . . . , Vm) be a collection of m k-flats on F
n
2 ,

Pplanted

Punif

(V ) =
Z(V )

E[Z]
.

Proof. By definition of Pplanted

Pplanted(V )

Punif(V )
=

1

2n

∑

x∈Fn
2

Px∗(V )

Punif(V )
.

To compute the probabilities in the above ratios, we use the interpretation above
of m drawings in N = 2kNk possible flats independently if the distribution is
Punif, or otherwise in N∗ = (2k − 1)Nk possible choices corresponding to flats
that do not contain x∗. Therefore, it holds for all V

Px∗(V )

Punif(V )
=

{

0 if x /∈ S(V )
(

N
N∗

)m
otherwise

Therefore, the likelihood ratio can be expressed in terms of 1{x ∈ S(V )}, and
N/N∗ = 1/(1 − 2−k)

Pplanted

Punif
(V ) =

1

2n

∑

x∈Fn
2

( N

N∗

)m
1{x ∈ S(V )}

=
1

E[Z]

∑

x∈Fn
2

1{x ∈ S(V )} =
Z(V )

E[Z]
.
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The distribution Pplanted therefore has a likelihood proportional to Z(V ): only
the flat satisfiable V have a positive measure, and those with a large number of
flat satisfying assignments are more likely to occur. This can be contrasted with
the uniform distribution on FLAT, for which all flat satisfiable V are equally likely.
One of the motivations behind the study of this likelihood ratio is its relationship
with the total variation distance. Indeed, we have

dTV(Punif,Pplanted) =
1

2
E

[∣

∣

∣

Z

E[Z]
− 1

∣

∣

∣

]

≤ 1

2

√

E[Z2]

E[Z]2
− 1 .

The last inequality is a consequence of Jensen’s inequality, and gives a more
tractable bound on the total variation distance. It is equivalent to considering
the χ2 divergence between the two distributions. When ∆ < ∆k, Lemma 3.2
yields

dTV(Punif,Pplanted) ≤
1

2

√

E[Z2]

E[Z]2
− 1 ≤ 1

2

√

1

E[Z]
+ o(1) → 0 .

Note that this approach is not fruitful to control the total variation distance
in the k-SAT planted satisfiability problem, as E[Z2] is too large, in the linear
regime of m = ∆n for some constant ∆ > 0.

For this problem, when ∆ > ∆k, Punif(Z > 0) ≤ E[Z] → 0. Checking flat
satisfiability, i.e. if Z > 0 is therefore a test with a one-sided probability of error
equal to Punif(Z > 0), as we have Pplanted(Z > 0) = 1. Together, these two
observations yield the following

Theorem 4.2. For a fixed ∆ > 0, let m = ∆n. The following holds

• For ∆ > ∆k, and ψFLAT(V ) = 1{Z(V ) > 0}

Punif(ψFLAT = 1) ∨Pplanted(ψFLAT = 0) → 0 .

• For ∆ < ∆k,

inf
ψ

Punif(ψ = 1) ∨Pplanted(ψ = 0) → 1

2
.

We observe in the statistical problem the same phase transition as in Theo-
rem 3.3: the problem switches at ∆k from being insolvable (with a total variation
distance converging to 0) to the existence of an powerful test, i.e. checking flat
satisfiability. Note that in this regime, since E[Z] < 1, this test is equivalent to
the likelihood ratio test Z(V ) > E[Z].

The picture is clear from the statistical and probabilistic point of view. How-
ever, from a computational point of view, checking if Z is equal to 0 (i.e. if the
union of flats covers F

n
2 ) is an NP-complete problem for k ≥ 3, as k-SAT is a

particular case. An interesting question is whether there are detection methods
that can solve this problem in an algorithmically efficient manner.
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5. POLYNOMIAL-TIME DETECTION

We study here the statistical performance of a test that runs in polynomial
time. We introduce some notations necessary to define this test. LetW be a k-flat
of Fn2 , defined by k affine constraints

W = {x ∈ F
n
2 : ℓi(x) = εi , ∀i ∈ [k]} .

We make the observation that x does not lie on W if and only if one of the above
equations is not satisfied, or equivalently, taking αi = 1− εi

x /∈W ⇐⇒ Pℓ,α(x) :=

k
∏

i=1

(

ℓi(x) + αi
)

= 0 .

Factoring out, Pℓ,α can be written as a multivariate polynomial over F2 of degree
k

Pℓ,α(x) =
∑

S⊂[n]
|S|≤k

cS(ℓ, α)
∏

s∈S

xs .

Note that all the monomials are squarefree, as z2 = z for all z ∈ F2. Solving
the k-FLAT problem is therefore equivalent to solving a system of m polynomial
equations of degree k. Of course, this is an NP-hard problem. In order to obtain
a test that is computationally tractable, we lift this system of equations in a
higher dimensional space to obtain a system of linear equations with quadratic
constraints, that we will then relax. This general idea is common over reals [Par01,
Las01], and adapted here in a finite field. In this particular context, this approach
is inspired by [AG11], where this technique is used in a problem of learning with
errors.

Let Nk =
∑k

i=0

(

n
i

)

≤ (n + 1)k, and for x ∈ F
n
2 , let X ∈ F

Nk

2 such that
XS =

∏

s∈S xs. We remark that Pℓ,α takes the same values as a linear form Lℓ,α
over FNk

2 , such that Pℓ,α(x) = Lℓ,α(X) for the X associated to x, by taking

Lℓ,α(X) =
∑

S⊂[n]
|S|≤k

cS(ℓ, α)XS .

If we consider the mapping φ from F
n
2 to F

Nk

2 , the so-called Veronese embedding,

that associates x to X, and V ⊂ F
Nk

2 the image of φ, it is equivalent to solve
Pℓ,α(x) = 0 over all of Fn2 and Lℓ,α(X) = 0 over V. In particular, determining if
an instance of the k-FLAT problem is flat satisfiable is equivalent to determining
if a system of m linear equations in F

Nk

2 has a solution in V. The image V can
be written as the intersection of quadratic constraints of the type X{1}X{2} =
X{1,2}, making the system of equations intractable. In order to obtain a tractable
approximation of this problem, we consider the relaxed linear system of equations,
by keeping solely the constraint X∅ = 1. Formally, for an instance V of the k-
FLAT problem, we will consider for each flat Vj the associated linear form Lℓj ,αj

,

and the overall system LV of m+ 1 linear equations in F
Nk

2

(LV ) Lℓj ,αj
(X) = 0 , ∀j ∈ [m] ; X∅ = 1 .
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Note that if x∗ ∈ F
n
2 is flat-satisfiable for V , the associated X∗ = φ(x∗) ∈ F

Nk

2 is
a solution to LV , as it is even a solution to the linear system of equations with
stricter constraint X ∈ V. As a consequence, the system LV always has a solution
for V ∼ Pplanted. However, under the uniform distribution, it is not always the
case.

Lemma 5.1. Recall that ∆k := log(1/2)/ log(1 − 2−k) ≈ 2k log(2). Let m =
∆Nk for ∆ > ∆k, and V = (V1, . . . , Vm) ∼ Punif. The linear system LV has no

solutions in F
Nk

2 , with probability converging to 1 when n→ +∞.

Proof. Consider a fixed Z ∈ F
Nk

2 such that Z∅ = 1. For an k-flatW described
by (ℓ, α), we write Lα,ℓ(Z) as a function qZ,ℓ of α ∈ F

k
2

qZ,ℓ(α) =
∑

S⊂[n]
|S|≤k

cS(ℓ, α)ZS .

We observe that each cS(ℓ, ·) is a multivariate multilinear polynomial (with mono-
mials that are squarefree), so that qZ,ℓ = F2[α1, . . . , αk]. Furthermore, the coef-
ficient of the monomial α1 . . . αk is Z∅ = 1. As the squarefree monomials are
linearly independent, there exists an element of Fk2 such that qZ,ℓ(α) 6= 0. There-
fore, as α is uniformly distributed under the uniform distribution q0, it holds
that

Punif(Lα,ℓ(Z) = 0) = Punif(qZ,ℓ(α) = 0) ≤ 1− 2−k .

As an aside, note that this bound is tight. Indeed, for all Z ∈ V, the event
Lα,ℓ(Z) = 0 is equivalent to z /∈W , for z = φ−1(Z). The probability of this event
is 1− 2−k, as seen in the proof of Lemma 3.1.

Let V = (V1, . . . , Vm) ∼ Punif. By independence, we obtain directly that

Punif(Lℓj ,αj
(X) = 0 , ∀j ∈ [m]) ≤ (1− 2−k)m .

By a union bound over all elements of FNk

2 , it holds that

Punif(LV has a solution) ≤ 2Nk(1− 2−k)m .

Taking ∆ > ∆k yields the desired result.

We consider the test ψL : V 7→ 1{LV has a solution}. When m is of order
Nk ≤ (n + 1)k, it is possible to construct and solve the linear system, and thus
to determine the outcome of the test, in time O(n3k), by Gaussian elimination.
The result of Lemma 5.1 gives a guarantee, in terms of sample size, about the
performance of this test.

Theorem 5.2. Let m = ∆nk, for ∆ > ∆k. It holds that

Punif(ψL = 1) ∨Pplanted(ψL = 0) → 0 .



10 BERTHET AND ELLENBERG

There are several remarks that one can make about this result. The test ψL

allows to distinguish the two distributions with probability of error going to 0,
with computation time and sample size that are both polynomial in n. In par-
ticular, we show that the sample size m needs only to be of order nk, which can
be compared to results in [AG11], where this linearization procedure is shown to
recover an analogue to the planted assignment x∗, with sample size n2k. The sta-
tistical performance shown here is however suboptimal, and it is not clear whether
there exists a test that runs in time polynomial in n and that can distinguish the
two distributions with high probability for a sample size linear in n, the optimal
regime, that can be seen as a benchmark.

There are other detection problems for which the optimal regime of detec-
tion is not known to be attainable by algorithmically efficient testing methods.
In particular, for the planted clique problem [Jer92, Kuč95] in a graph with n
vertices, even though cliques of size greater than 2 log2(n) can be detected or
recovered, polynomial-time algorithms are only known to be efficient at size

√
n

[AKS98], widely believed to be optimal. This hypothesis has recently been used as
a primitive to show hardness for other learning problems. This problem, as well
as those of estimating planted assignments for CSP problems have been stud-
ied, and computational lower bounds shown to exist, in a specific computational
model [FGR+13, FPV13].

A common type of method to solve these detection problems,one that comes
naturally to mind to find an improved algorithm for this problem - i.e. that
would need significantly less than nk samples - is to study the behavior of a
judiciously chosen, tractable statistic Σ of the data D. When D is constituted
of m independent samples, let us consider only Σ that are sums of statistics ρ
of r-tuples of the data, for a finite r. Simply, these approaches revolve around
showing that Σ(D) behaves differently under the two distributions of interest, say
Euniform[Σ(D)] = 0, and Eplanted[Σ(D)] = µ > 0, and by showing that when the
sample size is large enough, µ is much greater than the typical deviations of Σ,
making a test such as such as 1{Σ(D) > µ/2} powerful. Typical examples include
statistics based on the degrees of vertices in a graph, bias in signs of literals in a
CSP, etc.

This is not the approach used here, where our test is based on the existence of
an element verifying certain properties - here being a solution to a linear system
of equations in a finite field - not on summing a certain statistic over i.i.d samples
(or couples, or triplets of these samples). In the following section, we describe a
modified version of our hypothesis testing problem, by introducing the model
of light planting. We show that even though it does not change the statistical
nature of the problem, it is as hard as the “Learning Parity with Noise” problem,
strongly suggesting that it cannot be efficiently solved. Therefore, it is highly
improbable that any method that is robust to this modification - which is often
true for the approaches based on biases of statistics, as described above - could
be successful for detection of planted flat satisfiability.

6. DETECTION OF LIGHTLY PLANTED FLAT-SATISFIABILITY

We consider a modified version of our hypothesis testing problem. It has the
same null hypothesis and in the alternative, planting only happens with some
constant probability π ∈ (0, 1), which we call light planting. Formally, we denote
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by qx,π := (1−π)q0 + πqx the distribution on the flats of dimension n− k that is
mixture of the uniform q0 and of the planting distribution qx, and define similarly
Px,π and Pplanted,π. As in the planting model with π = 1, we have

Px,π := q⊗mx,π , Pplanted,π :=
1

2n

∑

x∈Fn
2

Px,π .

The alternative hypothesis is therefore replaced with H1,π : V = (V1, . . . , Vm) ∼
Pplanted,π.

6.1 Optimal rates of detection for light planting

To tackle this problem, we consider for a given set of flats V the following
statistics

s(V, x) = |{j : x /∈ Vj}| , and σ(V ) = max
x∈Fn

2

s(V, x) .

They are respectively the number of flats of V on which x does not lie, and the
maximum number of flat constraints simultaneously satisfiable by an element of
F
n
2 . We derive the following deviation bounds for this second statistic under both

hypotheses.

Lemma 6.1. For a fixed ∆ > 0, let m = ∆n. It holds that

Punif

(

σ(V ) > [(1− 2−k) + α]m
)

≤ exp
(

−
[

2α2∆− log(2)
]

n
)

Pplanted,π

(

σ(V ) < [(1− 2−k) + π2−k − α]m
)

≤ exp(−2α2∆n) .

Proof. For all x ∈ F
n
2 , we observe that under the null hypothesis, the variable

s(x, V ) has distribution B(m, 1− 2−k). Therefore, by Hoeffding’s inequality,

Punif

(

s(x, V ) > [(1− 2−k) + α]m
)

≤ exp(−2α2m) .

A union bound on F
n
2 yields

Punif

(

σ(V ) > [(1− 2−k) + α]m
)

≤ 2n exp(−2α2m) ≤ exp
(

−
[

2α2∆− log(2)
]

n
)

.

Under Px∗ the variable s(x∗, V ) has distribution B
(

m, (1 − 2−k) + π2−k
)

. By
Hoeffding’s inequality,

Px∗,π

(

s(x∗, V ) < [(1− 2−k) + π2−k − α]m
)

≤ exp(−2α2m) .

By definition of Pplanted,π and σ(V ) ≥ s(x, V ) for all x ∈ F
n
2 , we obtain the

desired result.

These deviation can be used to prove that a particular test is powerful in the
linear regime.

Theorem 6.2. For a fixed ∆ > 0, let m = ∆n, ∆̃k,π := 22k−1 log(2)/π2 and

∆k,π := 2k log(2)/π2. It holds that

• For ∆ > ∆̃k,π, and ψσ(V ) = 1{σ(V ) > [(1− 2−k) + π2−(k+1)]m}

Punif(ψσ = 1) ∨Pplanted,π(ψσ = 0) → 0 .
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• For ∆ < ∆k,π,

inf
ψ

Punif(ψ = 1) ∨Pplanted,π(ψ = 0) → 1

2
.

The first point of this result is a direct consequence of Lemma 6.1. The proof
of the second point is based on a bound between the χ2 divergence of the two
distributions, similarly to the result in Theorem 4.2. A full proof of the theorem
can be found in Appendix A. If we consider π to be a constant, the optimal rate
of detection for the light planting version of the problem is therefore still in the
linear regime m = ∆k,πn. Furthermore the right dependency of ∆k,π on π is in
1/π2, up to constants that only depend on k.

6.2 Computational aspects of light planting

The algorithmically efficient testing method described in Section 5 is not robust
to this modification of the hypothesis testing problem: it relies heavily on the
fact that for V ∼ Pplanted, there exists some x∗ that is flat-satisfiable, which
guarantees in turn the existence of a solution to the linear system LV . This
reasoning does not go through under the light planting model.

We give here strong reasons to believe that improving the result of Theorem 5.2
- for the case π = 1 - by using this type of method is hopeless. Our reasoning
is that such an approach would be robust to light planting, and would allow to
distinguish Punif and Pplanted,π with sample size and running time polynomial
in n. The following result shows that this would imply in turn the existence of
an efficient method for the decision version of the “Learning Parity with Noise”
(LPN) problem of [BKW03], known to be as hard as the recovery of the “secret”
signal. This is conjectured to be a hard problem, for which the best algorithms
run in time 2O(n/ log(n)), and used to prove the safety of cryptography systems
(see [Pie12], and references within).

Let (A, b) ∈ F
n×m
2 ×F

m
2 be an instance of LPN. For each j ∈ [m], let γj,1, . . . , γj,k−1

be k − 1 uniformly random, linearly independent linear forms of Fn2 , themselves
independent of the linear form ϕj generated by Aj . If Aj is uniformly random, the
n− k dimensional linear subspace of Fn2 that is the vanishing set of these k linear
forms is therefore uniformly random as well. Furthermore, let βj,1, . . . , βj,k−1 be
k − 1 independent, uniformly random elements of F2, independent of bj. Take
ℓj,1, . . . , ℓj,k be equal to γj,1, . . . , γj,k−1, ϕj in a uniformly random order, and
εj,1, . . . , εj,k be equal to βj,1, . . . , βj,k−1, 1 − bj in the same order. The equation
ℓj(x) = εj defines the n− k dimensional flat Vj.

Lemma 6.3. Let (A, b) be an instance of LPN, and V the associated instance

of k-FLAT obtained by the procedure described above. The following holds

• If (A, b) are independent and uniformly random, V ∼ Punif.

• If (A, b) is an instance with secret x, and probability of error η < 1/2,
V ∼ Px,π, with π = 1− 2η.

Proof. In all cases, the k-flats are independent, and the m sets of k linear
forms are uniformly distributed. If (A, b) is uniformly random, so are the bj, and
as a consequence, the εj . This yields the desired V ∼ Punif. However, if there
is a secret x, φj(x) = 1 − bj with probability η. The distribution of 1 − bj −
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φj(x) is therefore is a mixture of the uniform distribution on F2 (with weight
1 − π) and of the unit mass at 1 (with weight π). The distribution of εj −
ℓj(x) is thus the mixture of the uniform distribution on F

n
2 (with weight 1 − π)

and of the the distribution on F
k
2 \ {0} generated by placing a 1 in one of the

coefficients of εj − ℓj(x), and letting the others be independent and uniform. As
shown in Remark 2.1, the resulting flat Vj has distribution qx,π and V ∼ Px,π, as
desired.

From a computational point of view, there is a very strong difference between
the problems of detecting planted solutions to flat satisfiability, and detecting
solutions that are only lightly planted, for any constant π ∈ (0, 1). It seems
impossible to adapt the result of Theorem 5.2 to this new setting, and to describe
an efficient algorithm that can distinguish these distributions for a sample size of
order nk/π2, similarly to the result of Theorem 6.2.

The testing methods based on simple statistics (i.e. sums of simpler statistics
that depend on finite r-tuples of samples) as described in Section 5, are usually
robust to these modifications. As an example, for the planted clique problem,
consider a light planting distribution that only plants edges in the small subgraph
with probability π. The sum of the degrees of all the vertices has mean n(n−1)

4

under the null, and respectively n(n−1)
4 + k(k−1)

2 and n(n−1)
4 + π k(k−1)

2 under the
planted, or lightly planted distribution. Deviation bounds will therefore show that
a test based on this statistic will be successful when k ≥ C

√
n under the planted

model and k ≥ C
√

n/π under the lightly planted model, for some constant C > 0.
The rates of detection for this method are not changed by this modification, for a
constant π. The situation is similar for detection of planted satisfiability [Ber14,
Thm 3.1]: a statistic based on joint signs of variables appearing several times in
the formula has mean 0 under the uniform distribution, and mean 1/[2(2k − 1)]
under the planted distribution, and would have mean π2/[2(2k − 1)] under the
light planting model. The necessary sample size m of order

√
n in this problem

would only be affected in the constant by π.
Here, this problem is significantly harder to solve in an algorithmically efficient

manner when light planting is introduced. Any candidate algorithm to solve the
planting problem (with π = 1) would need therefore not be of the type informally
described above, and need to not be robust to this type of modification in the
distributions. Indeed, an algorithm robust to light planting that is statistically
and algorithmically efficient could otherwise be used to solve the LPN problem,
as shown in Lemma 6.3.
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APPENDIX A: PROOF OF THEOREM 6.2

Proof. For ∆ > ∆̃k,π, taking α = π2−(k+1) in the results of Lemma 6.1 yields
the desired upper bound, as 2α2∆− log(2) > 0.

For ∆ < ∆k,π, we derive a bound on the total variation distance dTV(Punif,Pplanted,π),
through the inequality

dTV(Punif,Pplanted,π) =
1

2
E

[∣

∣

∣

Pplanted,π

Punif
(V )−1

∣

∣

∣

]

≤ 1

2

√

E

[(

Pplanted,π

Punif
(V )− 1

)2]

.

The term inside the square root being equal to the chi-square divergence χ2(Pplanted,π,Punif)
between the two distributions. We write Px,π = q⊗mx,π and Punif = q⊗m0 as products
of the distribution of each independent Vj . Writing out Pplanted,π as a uniform
mixture of the Px,π yields

χ2(Pplanted,π,Punif) =
1

22n

∑

x,x′∈Fn
2

E

[

Px,π

Punif

Px′,π

Punif
(V )

]

− 1

=
1

22n

∑

x,x′∈Fn
2

E

[qx,π
q0

qx′,π
q0

(V1)
]m

− 1

=
1

22n

∑

x∈Fn
2

E

[(qx,π
q0

(V1)
)2]n

+
1

22n

∑

x 6=x′

E

[qx,π
q0

qx′,π
q0

(V1)
]m

− 1 .

Note that qx,π = (1− π)q0 + πqx, where qx is the uniform distribution on k-flats
that do not contain x (the planting distribution), so that

qx,π
q0

= 1 + π
[qx
q0

− 1
]

.

Substituting this in the above yields

χ2(Pplanted,π,Punif) =
1

22n

∑

x∈Fn
2

(

1+π2
[

E

[(qx
q0

(V1)
)2]

−1
])m

+
1

22n

∑

x 6=x′

(

1+π2
[

E

[qx
q0

qx′

q0
(V1)

]

−1
])m

−1 .
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Furthermore, for any k-flat V1, it holds that qx/q0(V1) = (N/Nk)1{x /∈ V1}. We
give the following upper bound the last two terms of this equation’s RHS,

1

22n

∑

x 6=x′

(

1 + π2
[

E

[qx
q0

qx′

q0
(V1)

]

− 1
])m

− 1 ≤ 1

22n
2n

(

1− π2 + π2
Punif(x, x

′ /∈ V1)
(1− 2−k)2

)m

≤
(1− π2

2

)n(

1 +
π2

1− π2
2 + 2−k

1− 2−k
1

2n − 1

)∆n
− 1

≤
(

1 +
ckπ

2

2n − 1

)ckn/π
2

− 1 ,

for some constant ck > 0 (independent of n and π), by the formula for Punif(x, x
′ /∈

V1) derived in the proof of Lemma 3.2. The last term converges to 0 when n →
+∞. We bound as well the first term of the main equation’s RHS

1

22n

∑

x∈Fn
2

(

1 + π2
[

E

[(qx
q0

(V1)
)2]

− 1
])m

≤ 1

22n
2n(1 + π2(Punif(x /∈ V1)− 1))m

≤ 1

2n

(

1 +
π2

2k − 1

)∆n
.

Taking ∆ < ∆k,π = 2k log(2)/π2 yields 1/2(1 + π2/(2k − 1))∆ < 1, and all the
terms of χ2(Pplanted,π,Punif) go to 0 when n→ +∞.
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