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Abstract

Optimal transport is a foundational problem in optimization, that allows to compare proba-
bility distributions while taking into account geometric aspects. Its optimal objective value, the
Wasserstein distance, provides an important loss between distributions that has been used in
many applications throughout machine learning and statistics. Recent algorithmic progress on
this problem and its regularized versions have made these tools increasingly popular. However,
existing techniques require solving an optimization problem to obtain a single gradient of the
loss, thus slowing down first-order methods to minimize the sum of losses, that require many
such gradient computations. In this work, we introduce an algorithm to solve a regularized
version of this problem of Wasserstein estimators, with a time per step which is sublinear
in the natural dimensions of the problem. We introduce a dual formulation, and optimize it
with stochastic gradient steps that can be computed directly from samples, without solving
additional optimization problems at each step. Doing so, the estimation and computation tasks
are performed jointly. We show that this algorithm can be extended to other tasks, including
estimation of Wasserstein barycenters. We provide theoretical guarantees and illustrate the
performance of our algorithm with experiments on synthetic data.

1 Introduction
Optimal transport is one of the foundational problems of optimisation (Monge, 1781; Kantorovich,
2006), and an important topic in analysis (Villani, 2008). It asks how one can transport mass with
distribution measure µ to another distribution measure ν, with minimal global transport cost. It can
also be written with a probabilistic interpretation, known as the Monge-Kantorovich formulation,
of finding a joint distribution π in the set Πpµ, νq of those with marginals µ and ν, minimizing an
expected cost between variables X and Y . The minimum value gives rise to a natural statistical tool
to compare distributions, known as the Wasserstein (or earth-mover’s) distance,

Wcpµ, νq “ OTpµ, νq “ min
πPΠpµ,νq

EpX,Y q„π rcpX,Y qs .

In the case of finitely supported measures, taken with same support size n for ease of notation, such
as two empirical measures from samples, it is written as a linear program (on the right). It can be
solved by the Hungarian algorithm (Kuhn, 1955), which runs in time Opn3q. While tractable, this is
still relatively expensive for extremely large-scale applications in modern machine learning, where
one hopes for running times that are linear in the size of the input (here n2).

Attention to this problem has been recently renewed in machine learning, in particular due to
recent advances to efficiently solve an entropic-regularized version (Cuturi, 2013), and its uses in
many applications (see e.g. Peyré et al., 2019, for a survey), as it allows to capture the geometric
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aspects of the data. This problem has a strongly convex objective, and its solution converges to that
of the optimal transport problem whenthe regularization parameter goes to 0. It can be easily solved
with the Sinkhorn algorithm (Sinkhorn, 1964; Altschuler et al., 2017), or by other methods in time
Opn2 log nq (Dvurechensky et al., 2018).

These tools have been applied in a wide variety of fields, from machine learning (Alvarez-Melis
et al., 2018; Arjovsky et al., 2017; Gordaliza et al., 2019; Flamary et al., 2018), natural language
processing (Grave et al., 2019; Alaux et al., 2019; Alvarez-Melis et al., 2018), computer graphics
(Feydy et al., 2017; Lavenant et al., 2018; Solomon et al., 2015), the natural sciences (del Barrio
et al., 2019; Schiebinger et al., 2019), and learning under privacy (Boursier and Perchet, 2019).

Of particular interests to statistics and machine learning are analyses of this problem with only
sample access to the distributions. There have been growing efforts to estimate either the objective
value of this problem, or the unknown distribution, with this metric or associated regularized metrics
(see below) (Weed et al., 2019; Genevay et al., 2019; Uppal et al., 2019). One of the motivations
are variational Wasserstein problems, where the objective value of an optimal transport problem is
used as a loss, and one seeks to minimize in a parameter θ an objective that depends on a known
distribution νθ

min
θPΘ

OTpνθ, µq ,

where µ is only accessible through samples. This method for estimation, referred to as minimum
Kantorovich estimators (Bassetti et al., 2006), mirrors the interpretation of likelihood maximization
as the minimization of KLpνθ, µq, with the Kullback-Leibler divergence.

The value of the entropic-regularized problem, or of the related Sinkhorn divergence, can also be
used as a loss in learning tasks (Alvarez-Melis et al., 2018; Genevay et al., 2017; Luise et al., 2018),
and compared to other metrics such as maximum mean discrepency (Gretton et al., 2012; Feydy
et al., 2019; Arbel et al., 2019). One of the advantages of the regularized problem is the existence of
gradients in the parameters of the problem (cost matrix, target measures).

The problem of minimizing this loss for the `2 cost over Rd has been shown to be equivalent to
maximum likelihood Gaussian deconvolution (Rigollet and Weed, 2018). We show here that this
result can be generalized for all cost functions to maximum likelihood estimation for a kernel inversion
problem. It is not only the solution of a stochastic optimization problem, but also an estimator,
referred to here as the regularized Wasserstein estimator.

In this work, we propose a new stochastic optimization scheme to minimize the OTε between an
unknown discrete measure µ and another discrete measure ν PM, with an additional regularization
term on ν. There are many connections between this problem and stochastic optimization: by a dual
formulation, the value OTεpµ, νq can be written as the optimum of an expectation in µ, ν, allowing
simple computations with only sample access (Genevay et al., 2016). Here, we take this one step
further and design an algorithm to optimize in ν, not just evaluate this loss. A direct approach is to
optimize by first-order methods, by the use of stochastic gradients in ν at each step (Genevay et al.,
2017). However, these gradient estimates are based on dual solutions of the regularized problem, so
obtaining them requires to solve an optimization problem, with running time scaling quadratically in
the intrinsic dimension of the problem (the size of the supports of µ, ν). For the dual formulation that
we introduce, stochastic gradients can be directly computed from samples. Algorithmic techniques
exploiting the particular structure of the dual formulation for this regularization allow us to compute
these gradients in constant time. We follow here the recent developments in sublinear algorithms
based on stochastic methods (Clarkson et al., 2012).

We provide theoretical guarantees on the convergence of the final iterate νt to the true minimizer
ν˚, and demonstrate these results on simulated experiments.
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2 Problem Description
Definitions. Let µ be a probability measure on Rd with finite support X “ txiu1ďiďI Ă Rd and
a family M of probability measures. The measures in M should all be absolutely continuous with
respect to a known measure β supported in the finite set Y “ tyju1ďjďJ Ă Rd. We consider the
following minimization problem:

min
νPM

OTεpµ, νq ` ηKLpν, βq. (1)

In this expression, OTε is the regularised optimal transport cost defined by the following expression

OTεpµ, νq “ min
πPΠpµ,νq

EpX,Y q„π rcpX,Y qs ` εKLpπ, µb νq, (2)

where the minimum is taken over the set

Πpµ, νq “ tπ P PpX ˆ Y q : πX “ µ, πY “ νu

of couplings of µ and ν, and c is a cost function in Rd. The operator KLp¨, ¨q is the Kullback-Leibler
divergence, defined as

KLpµ1, µ2q “ EZ„µ2

„

dµ1

dµ2
pZq log

ˆ

dµ1

dµ2
pZq

˙

,

for two measures µ1 and µ2 such that µ1 ! µ2. We assume that M is convex for the problem to be a
convex optimization problem, and compact to guarantee that the minimum is attained.
Remark 1. If c is a distance and if ε “ η “ 0, then OTε is a Wasserstein distance and our problem can
be seen as computing a projection of µ onto M. In the discrete case, the solution to the unregularized
problem is the distribution ν such that νpyq “ µpxq, where y is the nearest neighbour in Y of x.

Learning problem. Our objective is to solve the optimization problem in Equation (1), given
observations Xi independent and identically distributed (i.i.d.) from µ that is unknown, and sample
access to β. These can be assumed to be simulated by the user if β is known, as part of the
regularization. This problem can be either be interpreted as an unsupervised learning problem or as
estimation in an inverse problem, and we refer to it as regularized Wasserstein estimation. The term
in Kullback-Leibler (or entropy, up to an offset) are classical manners in which a probability can be
regularized.

Maximum likelihood interpretation. While the unregularized problem has a trivial solution,
there is in general no closed form for positive ε. When ε ą 0, η “ 0 and M is the set of all probability
measures on Y , then our problem is equivalent to the maximum likelihood estimator for a kernel
inversion problem. This corresponds to estimating the unknown initial distribution of a random
variable Y , but only by observing it after the action of a specific transition kernel κ (see, e.g., Berthet
and Kanade, 2019, for the statistical complexity of estimating initial dustributions under general
Markov kernels).

Proposition 2.1 (MLE interpretation). Let M be the set of all probability measures on Y , let ν˚ be
a measure on Y , and let κ : Y Ñ X be a transition kernel of the form

κpx, yq “
exp

´

´
cpx,yq
ε

¯

ř

x1PX exp
´

´
cpx1,yq
ε

¯ ,

the observed measure is µ “ κν˚, which can be written as

µpxq “

ż

Y

κpx, yqdν˚pyq.
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The maximum likelihood estimation of ν˚ for this observation is

ν̂ :“ arg max
νPM

ÿ

i

logpκνqpXiq.

This estimator also verifies
ν̂ “ arg min

νPM
OTεpµ, νq. (3)

Remark 2. If cpx, yq “ }x ´ y}2, then κpx, yq “: φεpx ´ yq is a Gaussian convolution kernel and
the sample measure µ “ φ ‹ ν˚ is a convolution, so the solution of (3) is the MLE of the Gaussian
deconvolution problem, as already presented by Rigollet and Weed (2018).

As in the Gaussian case, these optimization problems share an optimum, but are not equal in
value. Therefore, in our regularized setting, it is not possible to substitute one for the other.

3 Dual formulations
As noted above, first-order optimization methods to solve directly in ν the regularized problem
require at every step to solve an optimization problem. We explore instead another approach, through
a dual formulation of our problem. Such a formulation allows to change the minimisation problem in
(2) into a maximisation problem.

Proposition 3.1 (Dual formulation). If ε ą 0, then the problem (1) is equivalent to the following
problem:

min
fPF

max
aPL1pµq,bPL1pνq

E
„

apXq ` bpY qfpY q ´ ε exp

ˆ

apXq ` bpY q ´ cpX,Y q

ε

˙

` pη ´ εqfpY q log fpY q



,

(4)
the expectation being over the variables pX,Y q „ µb β, with fpyq “ dν

dβ pyq and F “ t dνdβ : ν PMu.

If f is constant β-almost everywhere, with value 1, then the maximization problem for a and b in
(4) is the dual of the regularized optimal transport problem 2, for which a block coordinate descent
corresponds to Sinkhorn algorithm (Cuturi, 2013).

This dual formulation is a saddle point problem, and it is convex-concave if η ě ε, so the Von
Neumann minimax theorem applies: we can swap the minimum and the maximum.

Proposition 3.2. If η ě ε ą 0 then the problem (1) is equivalent to the following maximization
problem:

max
aPL1pµq,bPL1pνq

F pa, bq, (5)

with
F pa, bq “ E

”

apXq ´ εe
apXq`bpY q´cpX,Y q

ε

ı

´ pη ´ εqH˚β

ˆ

´
b

η ´ ε

˙

, (6)

by writing
H˚β pαq “ max

fPF
E rαpY qfpY q ´ fpY q log fpY qs ,

with the variables pX,Y q „ µb β.

In its discrete formulation, the problem is written with the following notations: Ci,j :“ cpxi, yjq
for the cost matrix, ai “ apxiq and bj “ bpyjq for the dual vectors, and fj “ fpyjq for the remaining
primal variable.

The problem (5) is hence given by

max
pa,bqPRIˆRJ

F pa, bq, (7)
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with
F pa, bq “ E

„

ai ´ ε exp
´ai ` bj ´ Ci,j

ε

¯



´ pη ´ εqH˚β,M

ˆ

´
b

η ´ ε

˙

. (8)

The indices pi, jq are here independent random variables such that xi „ µ and yj „ β. The function
H˚β,M is the Legendre transform of the relative entropy to β on the set F:

H˚β,Mpαq “ max
fPF

E rfjpαj ´ log fjqs , (9)

with j a random index such that yj „ β.
If the maximum is attained on the relative interior of M at the point ν˚pαq, then we have

∇H˚β,Mpαq “ ν˚pαq. Moreover the optimum ν˚p´b˚{pη ´ εqq for the dual problem (4) is the optimal
ν PM for our general problem (1).

Proposition 3.3. The function F has the following properties.

1. The set of solutions to the problem (7) is a nonempty affine space spanned by the vector
pp1, . . . , 1q, p´1, . . . ,´1qq.

2. Every solution pa˚, b˚q of (7) verifies

@ i, j, |a˚i ` b
˚
j ´ Ci,j | ď B, (10)

with B :“ εm ` 2RC , where RC is the range of the matrix C given by RC :“ maxi,j Ci,j ´
mini,j Ci,j, and m :“ maxj | log fj | with fj “ ν˚j {βj.

3. The function ´F is λ-strongly convex on the slice t
ř

i µiai “
ř

j βjbju with

λ :“
mini,jtµi, βju

ε
e´pm`2RC{εq.

4. For i and j independent random variables as for (8), we have the gradients of F are written as
simple expectations

∇aF “ E rp1´Di,jqeis , (11)
∇bF “ E rpfj ´Di,jqejs , (12)

with Di,jpa, bq “ exp
´

ai`bj´Ci,j
ε

¯

.

4 Stochastic Optimization Methods
The formulas (11) and (12) suggest that our problem can be solved using a stochastic optimization
approach. For random indices i drawn from µ and j drawn from β, we obtain the following stochastic
gradients

Ga “ p1´Di,jqei “

ˆ

1´ exp
´ai ` bj ´ Ci,j

ε

¯

˙

ei

Gb “ pfj ´Di,jqej “

ˆ

ν˚j
βj
´ exp

´ai ` bj ´ Ci,j
ε

¯

˙

ej .

By Proposition 3.3, these are unbiased estimates of the gradients of F . The algorithm then proceeds
with an averaged gradient ascent that uses these stochastic gradients updates at each step. The
obtained iterates pbtqtě1 are averaged, producing the sequence

´

bt
¯

tě0
of iterates defined by

bt :“
1

t

ÿ

1ďt1ďt

bt
1

.
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The computation of Ga can be done in Op1q, however Gb necessitates the value ν˚j in (9) to be
computed. The complexity of this computation depends on the set M, and we will present here two
cases where it can be done with low complexity.

Initialization. To guarantee that the gradients will not get exponentially big, we choose the initial
value of the dual variables so that it verifies

@i, j, ai ` bj ´ Ci,j ď ´εm,

with m being defined in (10). We define

inipC, ε,mq :“ pminCi,j ´ εmq{2,

and we initialize
ai “ bj “ bj “ inipC, ε,mq. (13)

Usually, m is unknown and should be determined by heuristics.

Simple case. We analyze the case where M is the family of all probability measures supported in
the finite set tyju1ďjďJ Ă Rd, with the assumption that η ą ε. Then, if the max is attained on the
interior of the simplex, we have the optimum

ν˚j “
βje

´bj{pη´εq

ř

k βke
´bk{pη´εq

. (14)

Algorithm 1 SGD for Wasserstein estimator
The entries are the learning rates pγtq, the probabilities µ “ pµiqi, β “ pβjqj , the cost matrix Ci,j
and the logarithmic gap m between the solution and the prior.
Initialize ai “ bj “ bj “ inipC, ε,mq, S “ e´

inipC,ε,mq
η´ε ..

for t “ 1 to T do
Sample i P t1, . . . , Iu with probability µi.
Sample j P t1, . . . , Ju with probability βj .

Di,j “ e
ai`bj´Ci,j

ε .
fj “ e´bj{pη´εq{S.
ai Ð ai ` γtp1´Di,jq.
bj Ð bj ` γtpfj ´Di,jq with the previous as b1j .
bj Ð

`

1´ 1
t

˘

bj `
1
t bj

S Ð S ` βje
´bj{pη´εq ´ βje

´b1j{pη´εq

end for
for j “ 1 to J do
νj “ βje

´bj{pη´εq{
ř

j1 βj1e
´bj1 {pη´εq

end for
Return ν.

The algorithm needs Op1q complexity for each time step. If the values of Ci,j are accessible
without having the whole matrix stored (such as a simple function of xi and yj), the storage is only
OpI ` Jq in this algorithm, because we do not need to store any Di,j . The complexity at each step of
the algorithm is better than with the non regularized form, where j is taken as arg maxj βje

´bj{pη´εq,
instead of randomly. This enhancement in complexity mostly comes from the storage of the sum
St “

ř

j gjpb
t
jq with

gjpb
t
jq :“ βje

´btj{pη´εq.
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Indeed, instead of computing the entire sum at each iterates, which costs OpJq operations, the
algorithm simply updates the part of the sum that was modified:

St`1 “ St ` gjpb
t`1
j q ´ gjpb

t
jq.

This method assures updates in Op1q. In a context focused entirely on optimization, where µ and
β are known in advance, we could also pick i and j uniformly, and add µi and βj as factors in the
formulas. This would not reduce the complexity.

Mixture models. We also consider a set of measures pνkq1ďkďK supported in supported in the
set tyju1ďjďJ Ă Rd, and take M “ t

ř

k θkν
k : θ P ∆Ku to be their convex hull. We define the matrix

M “ pνkpyjqqj,k. Then M “ tMθ : θ P ∆Ku, and Equation (9) becomes

H˚β,Mpαq “ max
θP∆K

pα´ logpMθq ` logpβqqTMθ, (15)

with the log being taken component-wise.

Proposition 4.1. The maximization problem (15) has a solution

θ˚ “
M : exp

`

PImpMqp´b{pη ´ εq ´ 1´ logpβqq
˘

1TM : exp
`

PImpMqp´b{pη ´ εq ´ 1´ logpβqq
˘ ,

which gives the measure

ν˚ “
exp

`

PImpMqp´b{pη ´ εq ´ 1´ logpβq
˘

1T exp
`

PImpMqp´b{pη ´ εq ´ 1´ logpβq
˘ .

We can replace it in equation (12) to get the stochastic gradients. However at each new computed
step, every coefficient changes, and there is a need to do J computations for each step. The solution
computed here is also valid for the case when it is not unique.

We can, however, consider another regularization to the entropy of θ to improve the algorithm.
The problem is the following:

min
θP∆K

OTεpν, µq ` ηKLpθ,M :βq,

with M : being the Moore-Penrose inverse of the matrix M . The other computations are unchanged,
apart from Equation (9), replaced by

H˚β,Mpαq “ max
θP∆K

αTMθ ´ pη ´ εqKLpθ,M :βq

“ max
θP∆K

pMTα´ logpθq ` logpM :βqqT θ. (16)

Proposition 4.2. The maximization problem (16) has a solution

θ˚ “
exp

`

MT p´b{pη ´ εq ´ 1q ` logpM :βq
˘

1T exp pMT p´b{pη ´ εq ´ 1q ` logpM :βqq
.

Both regularizations KLpθ,M :βq and KLpν, βq are minimal when ν “ β, and can therefore be
used as a suitable proxy. The solution to the regularized problem is similar to the solution to the
unregularized one. For this modified problem, the computations are accessible, and they can be done
in time OpKq, a great improvement if K ! J . The algorithm is the following:
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Algorithm 2 SGD for Wasserstein projection
The entries are the learning rates pγtq, the probabilities µ “ pµiqi, β “ pβjqj , the stochastic matrix
M “ pνkj qj,k , the cost matrix Ci,j and the logarithmic gap m between the solution and the prior.
Initialize ai, bj , bj , α “ log

`

M :β
˘

, θk “ 1{K.
for t “ 1 to T do
Sample i P t1, . . . , Iu with probability µi.
Sample j P t1, . . . , Ju with probability βj .

Di,j “ e
ai`bj´Ci,j

ε .
fj “

řK
k“1 θkν

k
j {βj .

ai Ð ai ` γtp1´Di,jq.
bj Ð bj ` γtpfj ´Di,jq.
for k “ 1 to K do
αk Ð αk ´

γt
η´εν

k
j pfj ´Di,jq.

αk Ð
`

1´ 1
t

˘

αk `
1
tαk

end for
for k “ 1 to K do
θk “ eαk{

ř

k1 e
αk1 .

end for
end for
for k “ 1 to K do
θk “ eαk{

ř

k1 e
αk1 .

end for
for j “ 1 to J do
νj “

řK
k“1 θkν

k
j .

end for
Return ν.
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Wasserstein barycenters. Algorithm 4 can be used to compute an approximation of the Wasser-
stein barycenter of K measures µ1, . . . , µK . If the cost funtion in the optimal transport problem is
of the form cpx, yq “ dpx, yqp with d being a distance and p ě 1, then the transport cost OTp¨, ¨q
defines the p-Wasserstein distance. In these conditions, the Wasserstein barycenter of the measures
µ1, . . . , µK with weights θ1, . . . , θK is the solution of the problem

min
ν

K
ÿ

k“1

θk OTpµk, νq. (17)

This optimization and the barycenter that it defines was introduced by Agueh and Carlier (2011),
these objects and their regularized versions have attracted a lot of attention, for their statistical and
algorithmic aspects (Zemel et al., 2019; Cuturi and Doucet, 2014; Claici et al., 2018; Luise et al.,
2019).

As an analogy with our original problem (1), we consider an entropic regularization of the
Wasserstein barycenter problem (17):

min
νPM

K
ÿ

k“1

θk OTεpµ
k, νq ` ηKLpν, βq.

Our approach can be translated to this setting, as well as the theoretical results found for (1). We
have the equivalent dual formulation

max
aPL1pµq,bPL1pνq

F̃ pa1, . . . , aK , bq,

with

F̃ pa1, . . . , aK , bq :“
K
ÿ

k“1

θkFkpa
k, bq.

Here Fk is defined like the function F in (6) by replacing µ by µk. The only difference in the
algorithm is that there should be K dual variables a1, . . . , aK that play the role of the variable a
for each measure µk while one variable b is used to obtain the target measure. The complexity of
the algorithm is OpKq for each stochastic gradient step, which gains a factor logK compared to the
state-of-the-art stochastic Wasserstein barycenter (Staib et al., 2017), that solves the minimisation
problem

min
νPM

K
ÿ

k“1

θk OTεpµ
k, νq.

The complexity of a gradient step could be further reduced to Op1q at the cost of more randomization,
by sampling k randomly at each step with probability θk, and updating ak and b as in algorithm
4 with µk playing the role of µ. If η « ε, the approximation error of this estimated Wasserstein
Barycenter is of the same order as by Staib et al. (2017).

5 Results

5.1 Convergence bounds
The following convergence bounds are valid for both algorithms presented in the previous section.
They come from general convergence bounds averaged stochastic gradient descent with decreasing
stepsize (Shamir and Zhang, 2012). For ν˚ PM be the optimal Wasserstein estimator, let νt PM
be the estimator obtained by stopping the algorithm at step t. We consider the Kullback-Leibler
divergence to express how close the estimated measure νt is to ν˚. As νt is obtained with the dual
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variable bt, the estimation error of bt can translate to an entropic error in the following two bounds.
The first result uses the stepsize for SGD associated to strongly convex functions and the second
one uses the stepsize for SGD associated to convex functions. Both results are presented here: even
though the theoretical bound of the second one is asymptotically worse, its stepsize can yield better
performance in practice.

Theorem 5.1. With stepsize γt “ 1
λt , the estimator verifies the following bound:

E
“

KLpν˚, νtq
‰

ď 34
e2m

pη ´ εqλ2

1` log t

t
.

Theorem 5.2. With stepsize γt “ c0ε?
t
, c0 ď Be´m{ε, the estimator verifies the following bound:

E
“

KLpν˚, νtq
‰

ď 2
B2em

c0εpη ´ εqλ

2` log t
?
t

.

In order to prove both theorems, we present two lemmas whose proofs are provided in the
appendix.

Lemma 5.3. Let at, bt be the iterations of the stochastic gradient descent, seen as random variables.
If the initialization is done as in (13), then the second order moments of the stochastic gradients are
bounded:

E
“

}∇aFi,jpat, btq}2 ` }∇bFi,jpat, btq}2
‰

ď 2e2m.

Lemma 5.4. The convergence of the primal variable νpbq is linked to the convergence of the objective
by the following bound:

KLpνpb˚q, νpbqq ď
F pa˚, b˚q ´ F pa, bq

pη ´ εqλ
.

Proof of Theorem 5.1. The result from Shamir and Zhang (2012) on strongly convex functions gives
the bound

E
“

F pa˚, b˚q ´ F pat, btq
‰

ď 17
G2

λ

1` log t

t
,

with G2 being a bound on the second order moments of the stochastic gradients. The lemma 5.3
provides G2 “ 2e2m. We conclude with lemma 5.4.

Proof of theorem 5.2. With stepsize γt “ B
G
?
t
, the result from Shamir and Zhang (2012) on convex

functions gives the bound

E
“

F pa˚, b˚q ´ F pat, btq
‰

ď 2pBGq
2` log t
?
t

,

with G2 being a bound on the second order moments of the stochastic gradients. The lemma 5.3
provides G ě

?
2em, here we choose G “ B

c0ε
where we assume c0 ď Be´m{ε. We conclude with

Lemma 5.4.

Remark 3. The term in log t can be removed by using adaptive averaging schemes: by averaging
only the past αt iterates, the the term 1` log t can be replaced by 1´logp1´αq

α .
Remark 4. The strong convexity coefficient

λ “
mini,jtµi, βju

ε
e´B{ε

is negligible when ε ! B, thus the stepsize of the first theorem is large: it can lead to growth of the
dual variables grow out of their normal range and produces an exponential overflow in experiments.
One solution is to cap the dual variables to the range provided by (10), but the algorithm would then
not provide any useful solution until a high number of steps is performed, i.e. t Ç 1{Bλ. Instead,
we recommend using the stepsize γt “ mint1{λt, c0ε{

?
tu that provides a quick convergence at the

earlier steps, then gives a better asymptotic convergence rate.
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5.2 Simulations
We demonstrate the performance of the algorithm on simulated experiments.

Regularization term. In order to exhibit clearly the impact of regularization parameters, We
analyze a simple case, where X “ Y, and Ci,j “ |i´ j|. In this case the solution is given by ν˚ “ µ for
ε “ η “ 0, with a diagonal transportation matrix. The introduction of the positive regularization in
η noticeably spreads the transportation matrix, and provides a solution that is closer to the uniform
law on Y. We use the learning rate provided by Theorem 5.2.

Figure 1: Effect of the regularization. Upper plots, from left to right: cost matrix used, transportation
matrix for ε “ η ´ ε “ 0.1 after 105 iterations, and for ε “ η ´ ε “ 0.01. Lower plots, from left to
right: Target measure µ in blue, estimator in orange, ε “ η ´ ε “ 0.1, then for ε “ η ´ ε “ 0.01.

The regularization term η should be greater than ε, and brings the estimated measure closer to
the uniform measure. We choose to take η “ 2ε to conserve a similar degree of regularization as in
the case η “ 0, while guaranteeing that the exponentials in (14) do not overflow.

Sensibility to dimension. We consider the relationship between the convergence rate and the
dimensions pI, Jq of the problem. The theoretical results 5.1 and 5.2 depend on pmini µiq` pminj βjq,
which scales with 1{minpI, Jq if µ and β are uniform on their support. We generate X and Y as two
samples of I and J independent Gaussian vectors, µ is the uniform measure on X, and Ci,j is the
distance matrix between Xi and Yj . We compute the gradient norm of the objective function F at
the averaged iterates at, bt.

The gradient norm here converges at rate OpT´δq, with δ ě 1{2 as would be predicted from the
theorem 5.1, except in the case I ą J where 1{4 ď δ ă 1{2, which matches better with the bound in
Theorem 5.2. An increase of the sample size I for the input measure seems to decrease performance

11



Figure 2: Convergence of the gradient norm for different dimensions.

while an increase of the support size J of the target increases performance. It means that a finer grid
of points in Y will provide a faster convergence to the optimal estimator.

Choice of the learning rate. As noted above, a choice of learning rate that is large compared to
ε can lead to a divergence of the dual variables. This is due to the exponential dependency of the
gradients in a and b. Experiments suggest the learning rate

γt “ min

"

1

λt
,
c0ε
?
t

*

.

The following graphs show the convergence to the target with different choices of c0. Here ε “ 0.001,
η “ 0.002, with the same problem is the same as in the experiments on the regularization term.

Figure 3: Comparison of the learning rates.
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A regression on the curves shows that the empirical convergence rate is of order O
`

T´δ
˘

with
δ ą 1, which matches with theorem 5.1. We remark that the greater c0 is, the better the algorithm
converges, until it becomes unstable and does not converge anymore for c0 ą 5. This instability
was observed consistently for a large range of values of ε and η. The choice c0 “ 2 appears to be
reasonable for both stability and convergence.

6 Conclusion
We consider the problem of minimizing a doubly regularized optimal transport cost over a set of
finitely supported measures with fixed support. Using an entropic regularization on the target
measure, we derive a stochastic gradient descent on the dual formulation with sublinear (even
constant in the simplest case) complexity at each step of the optimization. The algorithm is thus
highly paralellizable, and can be used to compute a regularized solution to the Wasserstein barycenter
problem. We also provide convergence bounds for the estimator that this algorithm yields after t
steps, and demonstrate its performs on randomly generated data.
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A Proofs of technical results
Proof of proposition 2.1. This proof follows the reasoning in Rigollet and Weed (2018). Let µ “
1
I

ř

i δXi be the empirical measure of the sample pXiq. We first remark that the log-likelihood of Xi

defined by

`νpXiq :“ log

ż

κpXi, yqdνpyq

verifies
`νpXiq “ logEY„ν rκpXi, Y qs .

With the Legendre transform of the relative entropy, we obtain

`νpXiq “ sup
γi

EY„γi rlog κpXi, Y qs ´KLpγi, νq

with the minimum being over every probability measures γi on Y. The MLE maximizes

1

I

ÿ

i

`νpXiq “ EX„µ r`νpXqs

over ν PM, it can be written as

max
πPΠpµ,νq

EpX,Y q„π rlog κpX,Y qs ´ EX„µ rKLpπpX, ¨q, νqs ,

with πpX, ¨q being the conditional probability of π, defined by πpXi, ¨q :“ γi. We have

EX„µ rKLpπpX, ¨q, νqs “
1

I

ÿ

i

EY„ν
„

log
dπpXi, ¨q

dν
pY q



,

“
1

I

ÿ

i

EY„ν
„

log
dπ

dµb ν
pXi, Y q



´ log I,

“KLpπ, µb νq ´ log I.

Thus the MLE minimizes
min

πPΠpµ,νq
E rcpX,Y qs ` εKLpπ, µb νq,

which is the regularized optimal transport cost between µ and ν.

Proof of Proposition 3.3. 1. The function H˚β,M is a Legendre transform, so it is convex, and thus
´F is convex as a sum of convex functions. Moreover F is bounded from above:

F pa, bq ďC1Erai ` bjs ´ C2E
”

e
ai`bj
ε

ı

,

ďC3,

where C3 does not depend on a or b. Thus the set of solutions is nonempty. F is invariant by
the translation pa, bq ÞÑ pa1 ` c, . . . , aI ` c, b1 ´ c, . . . , bJ ´ cq, so each solution generates an
affine set of solutions spanned by the vector pp1, . . . , 1q, p´1, . . . ,´1qq. We can conclude using
the strong convexity on the slice t

ř

i µiai “
ř

j βjbju, which implies that there exists only one
solution on this slice.

2. The solution pa˚, b˚q solves the following system
#

∇aF pa˚, b˚q “ 0,

∇bF pa˚, b˚q “ 0.
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With notations Ai “ ea
˚
i {ε, Bj “ eb

˚
j {ε, Γi,j “ e´Ci,j{ε, the two equations can be written as

#

@ 1 ď i ď I, 1´Ai
ř

j βjBjΓi,j “ 0,

@ 1 ď j ď J, fj ´Bj
ř

i µiAiΓi,j “ 0.
(18)

Thus
#

@ 1 ď i ď I, Ai “
1

ř

j βjBjΓi,j
,

@ 1 ď j ď J, Bj “
fj

ř

i µiAiΓi,j
.

(19)

We also remark that by multiplying the second term of (18) by βj and summing over j we get
ÿ

i,j

µiAiβjBjΓi,j “ 1. (20)

By multiplying the equations in (19) we have for all i, j:

AiBjΓi,j “
fjΓi,j

ř

k,l µkAkΓk,jβlBlΓi,l

thus using (20):

fj min
k,l

Γi,jΓk,l
Γk,jΓi,l

ď AiBjΓi,j ď fj max
k,l

Γi,jΓk,l
Γk,jΓi,l

finally
e´m´2RC{ε ď AiBjΓi,j ď em`2RC{ε.

3. We now prove that ´F is strongly convex. We compute

´∇2
aF “ E

„

1

ε
Di,jEi,i



,

´∇2
bF “ ´∇bν˚ ` E

„

1

ε
Di,jEj,j



,

´∇a∇bF “ E
„

1

ε
Di,jEi,j



.

We remark that
ν˚ “ softmaxp´bj{η ` log βjq,

so
´∇bν˚ “

1

η
S

with
S :“ p∇softmaxqp´bj{η ` log βjq,

S “ pνipδi,j ´ νjqqi,j .

We remark that S ě 0 since

uTSu “
ÿ

i

νiu
2
i ´

˜

ÿ

i

νiui

¸2

“ EνrU2s ´ pEνrU sq2 ě 0
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by Jensen, with U “ uj with probability νj . It implies ´∇bν˚j ě 0. So

´∇2
a,bF ě

1

ε
M,

with
M :“ E

„

Di,j

ˆ

Ei,i Ei,j
Ej,i Ej,j

˙

.

As we want to prove strong convexity on the slice
ř

i µiai “
ř

j βjbj , we compute

pa, bqTMpa, bq “ E
“

Di,jpai ` bjq
2
‰

ě e´B{εE
“

pai ` bjq
2
‰

.

We add that
E
“

pai ` bjq
2
‰

“
ÿ

i

µia
2
i `

ÿ

j

βjb
2
j ` 2p

ÿ

i

µiaiqp
ÿ

j

βjbjq

thus
E
“

pai ` bjq
2
‰

“
ÿ

i

pµi ` µ
2
i qa

2
i `

ÿ

j

pβj ` β
2
j qb

2
j

since we are on the slice. So M ě λId and finally ´F is λ´strongly convex with

λ “
mini,jtµi, βju

ε
e´B{ε.

4. We compute the gradients of F :

BF

Bai
pa, bq “ µi ´ µi

J
ÿ

j“1

βjDi,jpa, bq, (21)

BF

Bbj
pa, bq “ ν˚j p´b{ηq ´ βj

I
ÿ

i“1

µiDi,jpa, bq, (22)

with Di,jpa, bq “ e
ai`bj´Ci,j

ε . If we take i and j to be independent random variables following
the laws pµiq and pβjq respectively, we have the desired expression for the gradients.

Proof of Lemma 1. With the initial conditions, we guarantee that 0 ď G0
a ď 1 and 0 ď G0

b ď fj ď em.
At each timestep t, we have

}∇F ti,j}2 ď maxt2e2m, 2pDt
i,jq

2u,

with i, j being two independent random variables following the laws µ and β respectively. If Dt
i,j ě em,

then Ga `Gb ď 0 and
Dt`1
i,j “ Dt

i,je
Ga`Gb

ε ď Dt
i,j .

Moreover if Dt
i,j ď em then }∇F ti,j}2 ď 1` e2m thus E

“

maxt2e2m, pDt
i,jq

2u
‰

is a decreasing function
of t. Thus we have the bound

E
“

}∇aFi,jpat, btq}2 ` }∇bFi,jpat, btq}2
‰

ď 2e2m.
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Proof of Lemma 2. We first assume that pa, bq and pa˚, b˚q are on the slice t
ř

i µiai “
ř

j βjbju. By
strong convexity of ´F on this slice we have

|b´ b˚|2 ď
2pF pa˚, b˚q ´ F pa, bqq

λ
. (23)

We remark that the function g : b ÞÑ KLpνpb˚q, νpbqq verifies

Bigpbq “ ´
ÿ

j

νjpb
˚qBi log νjpbq,

“ ´
ÿ

j

νjpb
˚qνjpbq

´1Biνjpbq,

“
1

η

ÿ

j

νjpb
˚qνjpbq

´1νipδij ´ νjpbqq,

“
νipb

˚q ´ νipbq

η ´ ε
,

thus

BiBjgpbq “ ´
Bjνipbq

η ´ ε
,

“ ´
νjpbqpδij ´ νipbqq

η ´ ε
,

so the Hessian matrix ∇2gpbq of g is a sum of a diagonal matrix with the negative values ´νjpbq{pη´εq
and the one-rank matrix pνjpbqνipbq{pη ´ εqqi,j . Hence the eigenvalues of ∇2gpbq are contained in
r´1{pη ´ εq, 1{pη ´ εqs, thus Taylor’s inequality gives

gpbq ď gpb˚q ` |b´ b˚|}∇gpb˚q} ` |b´ b
˚|2

2pη ´ εq
,

ď
|b´ b˚|2

2pη ´ εq
,

because gpb˚q “ 0 and ∇gpb˚q “ 0. We complete the proof with (23). For the case where the vector
pa, bq or pa˚, b˚q is not on the slice t

ř

i µiai “
ř

j βjbju, we note that adding a constant vector
c “ pc1, . . . , c1q to b does not change the value of νpbq, and that F is invariant by translation in the
direction p´c,`cq. With c1 “

´

ř

i µiai ´
ř

j βjbj

¯

{2, the vectors pa1, b1q “ pa` c, b´ cq are on the
slice and verify νpb1q “ νpbq and F pa1, b1q “ F pa, bq. Hence the result for pa1, b1q implies the result for
pa, bq.
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