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Abstract. We consider the problem of link prediction, based on par-
tial observation of a large network, and on side information associated
to its vertices. The generative model is formulated as a matrix logis-
tic regression. The performance of the model is analysed in a high-
dimensional regime under a structural assumption. The minimax rate
for the Frobenius-norm risk is established and a combinatorial estima-
tor based on the penalised maximum likelihood approach is shown to
achieve it. Furthermore, it is shown that this rate cannot be attained
by any (randomised) algorithm computable in polynomial time under
a computational complexity assumption.
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INTRODUCTION

In the field of network analysis, the task of link prediction consists in predicting
the presence or absence of edges in a large graph, based on the observations of
some of its edges, and on side information. Network analysis has become a growing
inspiration for statistical problems. Indeed, one of the main characteristics of
datasets in the modern scientific landscape is not only their growing size, but
also their increasing complexity. Most phenomena now studied in the natural
and social sciences concern not only isolated and independent variables, but also
their interactions and connections.

The fundamental problem of link prediction is therefore naturally linked with
statistical estimation: the objective is to understand, through a generative model,
why different vertices are connected or not, and to generalise these observations
to the rest of the graph.

Most statistical problems based on graphs are unsupervised: the graph itself
is the sole data, there is no side information, and the objective is to recover an
unknown structure in the generative model. Examples include the planted clique
problem (Alon and Sudakov, 1998; Kučera, 1995), the stochastic block model
(Holland et al., 1983)—see Abbe (2017) for a recent survey of a very active line of
work (Abbe and Sandon, 2015; Banks et al., 2016; Decelle et al., 2011; Massoulié,
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2014; Mossel et al., 2013, 2015), the Ising blockmodel (Berthet et al., 2016),
random geometric graphs – see Penrose (2003) for an introduction and (Bubeck
et al., 2014; Devroye et al., 2011) for recent developments in statistics, or metric-
based learning (Bellet et al., 2014; Chen et al., 2009) and ordinal embedings (Jain
et al., 2016).

In supervised regression problems on the other hand, the focus is on under-
standing a fundamental mechanism, formalized as the link between two variables.
The objective is to learn how an explanatory variable X allows to predict a re-
sponse Y , i.e. to find the unknown function f that best approximates the rela-
tionship Y ≈ f(X). This statistical framework is often applied to the observation
of a phenomenon measured by Y (e.g. of a natural or social nature), given known
information X: the principle is to understand said phenomenon, to explain the
relationship between the variables by estimating the function f (Hoff et al., 2002;
Holland and Leinhardt, 1981).

We follow this approach here: our goal is to learn how known characteristics
of each agent (represented by a node) in the network induce a greater or smaller
chance of connection, to understand the mechanism of formation of the graph. We
propose a model for supervised link prediction, using the principle of regression
for inference on graphs. For each vertex, we are given side information, a vector
of observations X ∈ Rd. Given observations Xi, Xj about nodes i and j of a
network, we aim to understand how these two explanatory variables are related
to the probability of connection between the two corresponding vertices, such that
P(Y(i,j) = 1) = f(Xi, Xj), by estimating f within a high-dimensional class based
on logistic regression. Besides this high-dimensional parametric modelling, various
fully non-parametric statistical frameworks were exploited in the literature, see,
for example, Gao et al. (2015); Wolfe and Olhede (2013), for graphon estimation,
Biau and Bleakly (2008); Papa et al. (2016) for graph reconstruction and Bickel
and Chen (2009) for modularity analysis.

Link prediction can be useful in any application where data can be gathered
about the nodes of a network. One of the most obvious motivations is in social
networks, in order to model social interactions. With access to side information
about each member of a social network, the objective is to understand the mech-
anisms of connection between members: shared interests, differences in artistic
tastes or political opinion (Wasserman and Faust, 1994). This can also be applied
to citation networks, or in the natural sciences to biological networks of interac-
tions between molecules or proteins (Madeira and Oliveira, 2004; Yu et al., 2008).
The key assumption in this model is that the network is a consequence of the
information, but not necessarily based on similarity: it is possible to model more
complex interactions, e.g. where opposites attract.

The focus on a high-dimensional setting is another aspect of this work that is
also motivated by modern applications of statistics: data is often collected without
discernment and the ambient dimension d can be much larger than the sample
size. This setting is common in regression problems: the underlying model is often
actually very simple, to reflect the fact that only a small number of measured
parameters are relevant to the problem at hand, and that the intrinsic dimension
is much smaller. This is usually handled through an assumption on the rank,
sparsity, or regularity of a parameter. Here this needs to be adapted to a model
with two covariates (explanatory variables) and a structural assumption is made
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in order to reflect this nature of our problem.
We therefore decide to tackle link prediction by modelling it as matrix logistic

regression. We study a generative model for which P(Y(i,j) = 1) = σ(X>i Θ?Xj),
where σ is the sigmoid function, and Θ? is the unknown matrix to estimate.
It is a simple way to model how the variables interact, by a quadratic affinity
function and a sigmoid function. In order to model realistic situations with partial
observations, we assume that Y(i,j) is only observed for a subset of all the couples
(i, j), denoted by Ω.

To convey the general idea of a simple dependency on Xi and Xj , we make
structural assumptions on the rank and sparsity of Θ?. This reflects that the
affinity X>i Θ?Xj is a function of the projections u>` X for the vectors Xi and Xj ,
for a small number of orthogonal vectors, that have themselves a small number
of non-zero coefficients (sparsity assumption). In order to impose that the inverse
problem is well-posed, we also make a restricted conditioning assumption on Θ?,
inspired by the restricted isometry property (RIP). These conditions are discussed
in Section 1. We talk of link prediction as this is the legacy name but we focus
almost entirely on the problem of estimating Θ?.

The classical techniques of likelihood maximization can lead to computation-
ally intractable optimization problems. We show that in this problem as well as
others this is a fundamental difficulty, not a weakness of one particular estimation
technique; statistical and computational complexities are intertwined.

Our contribution: This work is organized in the following manner: We give
a formal description of the problem in Section 1, as well as a discussion of our
assumptions and links with related work. Section 2 collects our main statistical
results. We propose an estimator Θ̂ based on the penalised maximum likelihood
approach and analyse its performance in Section 2.1 in terms of non-asymptotic
rate of estimation. We show that it attains the minimax rate of estimation over
simultaneously block-sparse and low-rank matrices Θ?, but is not computationally
tractable. In Section 2.2, we provide a convex relaxation of the problem which is
in essence the Lasso estimator applied to a vectorised version of the problem. The
link prediction task is covered in Section 2.3. A matching minimax lower bound for
the rate of estimation is given in Section 2.4. Furthermore, we show in Section 3
that the minimax rate cannot be attained by a (randomised) polynomial-time
algorithm, and we identify a corresponding computational lower bound. The proof
of this bound is based on a reduction scheme from the so-called dense subgraph
detection problem. Technical proofs are deferred to the appendix. Our findings
are depicted in Figure 1.

Notation: For any positive integer n, we denote by [n] the set {1, . . . , n} and
by [[n]] the set of couples of [n], of cardinality

(
n
2

)
. We denote by R the set of

real numbers and by Sd the set of real symmetric matrices of size d. For a matrix
A ∈ Sd, we denote by ‖A‖F its Frobenius norm, defined by

‖A‖2F =
∑
i,j∈[d]

A2
ij .

We extend this definition for B ∈ Sn and any subset Ω ⊆ [[n]] to its semi-norm
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Figure 1: The computational and statistical boundaries for estimation and pre-
diction in the matrix logistic regression model. Here k denotes the sparsity of Θ?

and r its rank, while N is the number of observed edges in the network.

‖B‖F,Ω defined by

‖B‖2F,Ω =
∑

i,j : (i,j)∈Ω

B2
ij .

The corresponding bilinear form playing the role of inner-product of two ma-
trices B1, B2 ∈ Sn is denoted as 〈〈B1, B2〉〉F,Ω. For a matrix B ∈ Sn, we also
make use of the following matrix norms and pseudo-norms for p, q ∈ [0,∞),
with ‖B‖p,q =

∥∥(‖B1∗‖p · · · ‖Bd∗‖p)
∥∥
q
, where Bi∗ denotes the ith row of B, and

‖B‖∞ = max(i,j)∈[d] |Bij |. For asymptotic bounds, we shall write f(x) . g(x) if
f(x) is bounded by a constant multiple of g(x).

1. PROBLEM DESCRIPTION

1.1 Generative model

For a set of vertices V = [n] and explanatory variables Xi ∈ Rd associated to
each i ∈ V , a random graph G = (V,E) is generated by the following model. For
all i, j ∈ V , variables Xi, Xj ∈ Rd and an unknown matrix Θ? ∈ Sd, an edge
connects the two vertices i and j independently of the others according to the
distribution

(1.1) P
(
(i, j) ∈ E

)
= σ(X>i Θ?Xj) =

1

1 + exp(−X>i Θ?Xj)
.

Here we denote by σ the sigmoid, or logistic function.

Definition 1. We denote by πij : Sd → [0, 1] the function mapping a matrix
Θ ∈ Sd to the probability in (1.1). Let Σ ∈ Sn with Σij = X>i ΘXj denote the
so-called affinity matrix. In particular, we then have πij(Θ) = σ(Σij).

Our observation consists of the explanatory variables Xi and of the observation
of a subset of the graph. Formally, for a subset Ω ⊆ [[n]], we observe an adjacency
vector Y indexed by Ω that satisfies, for all (i, j) ∈ Ω, Y(i,j) = 1 if and only if
(i, j) ∈ E (and 0 otherwise). We thus have

(1.2) Y(i,j) ∼ Bernoulli
(
πij(Θ?)

)
, (i, j) ∈ Ω .

The joint data distribution is denoted by PΘ? and is thus completely specified
by πij(Θ?), (i, j) ∈ Ω. For ease of notation, we write N = |Ω|, representing the
effective sample size. Our objective is to estimate the parameter matrix Θ?, based
on the observations Y ∈ RN and on known explanatory variables X ∈ Rd×n.
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This problem can be reformulated as a classical logistic regression problem.
Indeed, writing vec(A) ∈ Rd2

for the vectorized form of a matrix A ∈ Sd, we
have that

(1.3) X>i Θ?Xj = Tr(XjX
>
i Θ?) = 〈vec(XjX

>
i ),vec(Θ?)〉 .

The vector of observation Y ∈ RN therefore follows a logistic distribution with
explanatory design matrix DΩ ∈ RN×d2

such that DΩ (i,j) = vec(XjX
>
i ) and

predictor vec(Θ?) ∈ Rd2
. We focus on the matrix formulation of this problem,

and consider directly matrix logistic regression in order to simplify the notation
of the explanatory variables and our model assumptions on Θ?, that are specific
to matrices.

1.2 Comparaison with other models

This model can be compared to other settings in the statistical and learning
literature.

Generalised linear model. As discussed above in the remark to (1.3), this is
an example of a logistic regression model. We focus in this work on the case where
the matrix Θ? is block-sparse. The problem of sparse generalised linear models,
and sparse logistic regression in particular has been extensively studied (see, e.g.
Abramovich and Grinshtein, 2016; Bach, 2010; Bunea, 2008; Meier et al., 2008;
Rigollet, 2012; van de Geer, 2008, and references therein). Our work focuses on
the more restricted case of block-sparse and low-rank parameter, establishing
interesting statistical and computational phenomena in this setting.

Graphon model. The graphon model is a model of a random graph in which
the explanatory variables associated with the vertices in the graph are unknown.
It has recently become popular in the statistical community, see Gao et al. (2015);
Klopp and Tsybakov (2015); Wolfe and Olhede (2013); Zhang et al. (2015). Typ-
ically, an objective of statistical inference is a link function which belongs to
either a parametric or non-parametric class of functions. Interestingly, the mini-
max lower bound for the classes of Hölder-continuous functions, obtained in Gao
et al. (2015), has not been attained by any polynomial-time algorithm.

Trace regression models. The modelling assumption (1.1) of the present
paper is in fact very close to the trace regression model, as it follows from the
representation (1.3). Thus, the block-sparsity and low-rank structures are pre-
served and can well be studied by the means of techniques developed for the
trace regression. We refer to Fan et al. (2016); Koltchinskii et al. (2011); Negah-
ban and Wainwright (2011); Rohde and Tsybakov (2011) for recent developments
in the linear trace regression model, and Fan et al. (2017) for the generalised trace
regression model. However, computational lower bounds have not been studied
either and many existing minimax optimal estimators cannot to be computed in
polynomial time.

Metric learning. In the task of metric learning, observations depend on an
unknown geometric representation V1, . . . , Vn of the variables in a Euclidean space
of low dimension. The goal is to estimate this representation (up to a rigid trans-
formation), based on noisy observations of 〈Vi, Vj〉 in the form of random eval-
uations of similarity. Formally, our framework also recovers the task of metric
learning by taking Xi = ei and Θ? an unknown semidefinite positive matrix of
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small rank (here V >V ), since

〈Vi, Vj〉 = 〈V ei, V ej〉 = e>i V
>V ej .

We refer to (Bellet et al., 2014; Chen et al., 2009) and references therein for a
comprehensive survey of metric learning methods.

1.3 Parameter space

The unknown predictor matrix Θ? describes the relationship between the ob-
served features Xi and the probabilities of connection πij(Θ?) = σ(X>i Θ?Xj)
following Definition 1. We focus on the high-dimensional setting where d2 � N :
the number of features for each vertex in the graph, and number of free pa-
rameters, is much greater than the total number of observations. In order to
counter the curse of dimensionality, we make the assumption that the function
(Xi, Xj) 7→ πij depends only on a small subset S of size k of all the coefficients of
the explanatory variables. This translates to a block-sparsity assumption on Θ?:
the coefficients Θ? ij are only nonzero for i and j in S. Furthermore, we assume
that the rank of the matrix Θ? can be smaller than the size of the block. Formally,
we define the following parameter spaces

Pk,r(M) =
{

Θ ∈ Sd : ‖Θ‖1,1 < M , ‖Θ‖0,0 ≤ k , and rank(Θ) ≤ r
}
,

for the coefficient-wise `1 norm ‖ · ‖1,1 on Sd and integers k, r ∈ [d]. We also
denote P(M) = Pd,d(M) for convenience.

Remark 2. The bounds on block-sparsity and rank in our parameter space
are structural bounds: we consider the case where the matrix Θ? can be concisely
described in terms of the number of parameters. This is motivated by considering
the spectral decomposition of the real symmetric matrix Θ? as

Θ? =

r∑
`=1

λ`u`u
>
` .

The affinity Σij = X>i Θ?Xj between vertices i and j is therefore only a function
of the projections of Xi and Xj along the axes u`, i.e.

Σij = X>i Θ?Xj =
r∑
`=1

λ`(u
>
` Xi)(u

>
` Xj) .

Assuming that there are only a few of these directions u` with non-zero impact
on the affinity motivates the low-rank assumption, while assuming that there are
only few relevant coefficients of Xi, Xj that influence the affinity corresponds to a
sparsity assumption on the u`, or block sparsity of Θ?. The effect of these projec-
tions on the affinity is weighted by the λ`. By allowing for negative eigenvalues,
we allow our model to go beyond a geometric description, where close or similar
Xs are more likely to be connected. This can be used to model interactions where
opposites attract.

The assumption of simultaneously sparse and low-rank matrices arises natu-
rally in many applications in statistics and machine learning and has attracted
considerable recent attention. Various regularisation techniques have been devel-
oped for estimation, variable and rank selection in multivariate regression prob-
lems (see, e.g. Bunea et al., 2012; Richard et al., 2012, and the references therein).
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1.4 Explanatory variables

As mentioned above, this problem is different from tasks such as metric learn-
ing, where the objective is to estimate the Xi with no side information. Here they
are seen as covariates, allowing us to infer from the observation on the graph the
predictor variable Θ?. For this task to be even possible in a high-dimensional
setting, we settle the identifiability issue by making the following variant of a
classical assumption on X ∈ Rd×n.

Definition 3 (Block isometry property). For a matrix X ∈ Rd×n and an
integer s ∈ [d], we define ∆Ω,s(X) ∈ (0, 1) as the smallest positive real such that

N
(
1−∆Ω,s(X)

)
‖B‖2F ≤ ‖X>B X‖2F,Ω ≤ N

(
1 + ∆Ω,s(X)

)
‖B‖2F ,

for all matrices B ∈ Sd that satisfy the block-sparsity assumption ‖B‖0,0 ≤ s.

Definition 4 (Restriced isometry properties). For a matrix A ∈ Rn×p and
an integer s ∈ [p], δs(A) ∈ (0, 1) is the smallest positive real such that

n
(
1− δs(A)

)
‖v‖22 ≤ ‖Av‖22 ≤ n

(
1 + δs(A)

)
‖v‖22 ,

for all s-sparse vectors, i.e. satisfying ‖v‖0 ≤ s.

When p = d2 is a square, we define δB,s(A) as the smallest positive real such
that

n
(
1− δB,s(A)

)
‖v‖22 ≤ ‖Av‖22 ≤ n

(
1 + δB,s(A)

)
‖v‖22 ,

for all vectors such that v = vec(B), where B satisfies the block-sparsity assump-
tion ‖B‖0,0 ≤ s.

The first definition is due to Candes and Tao (2005), with restriction to sparse
vectors. It can be extended in general, as here, to other types of restrictions (see,
e.g. Traonmilin and Gribonval, 2015). Since the restriction on the vectors in the
second definition (s-by-s block-sparsity) is more restricting than in the first one
(sparsity), δB,s is smaller than δs2 . These different measures of restricted isometry
are related, as shown in the following lemma

Lemma 5. For a matrix X ∈ Rd×n, let DΩ ∈ RN×d2
be defined row-wise by

DΩ (i,j) = vec(XjX
>
i ) for all (i, j) ∈ Ω. It holds that

∆Ω,s(X) = δB,s(DΩ) .

Proof. This is a direct consequence of the definition of DΩ, which yields
‖X>B X‖2F,Ω = ‖DΩ vec(B)‖22, and ‖vec(B)‖22 = ‖B‖2F .

The assumptions above guarantee that the matrix Θ? can be recovered from
observations of the affinities, settling the well-posedness of this part of the inverse
problem. However, we do not directly observe these affinities, but their image
through the sigmoid function. We must therefore further impose the following
assumption on the design matrix X that yields constraints on the probabilities
πij and in essence governs the identifiability of Θ?.
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Assumption 6. There exists a constant M > 0 such that for all Θ in the
class P(M) we have max(i,j)∈Ω |X>i ΘXj | < M .

In particular, under this assumption a constant

(1.4) L(M) := σ′(M) = σ(M)
(
1− σ(M)

)
,

is lower bounded away from zero, and we have

(1.5) inf
Θ∈P(M)

σ′(X>i ΘXj) ≥ L(M) > 0 ,

for all (i, j) ∈ Ω. Assuming that L(M) always depends on the same M , we
sometimes write simply L.

Remark 7. Assumption 6 is necessary for the identifiability of Θ?: if X>i Θ?Xj

can be arbitrarily large in magnitude, πij = σ(X>i Θ?Xj) can be arbitrarily close
to 0 or 1. Since our observations only depend on Θ? through its image πij, this
could lead to a very large estimation error on Θ? even with a small estimation
error on the πij.

Remark 8. This assumption has already appeared in the literature on high-
dimensional estimation, see Abramovich and Grinshtein (2016); van de Geer
(2008). Similarly to Bach (2010), Assumption 6 can be shown to be redundant
for minimax optimal prediction, because the log-likelihood function in the matrix
logistic regression model satisfies the so-called self-concordant property. Our anal-
ysis to follow can be combined with an analysis similar to Bach (2010) to get rid
of the assumption for minimax optimal prediction.

Proposition 9. The identifiability assumption max(i,j)∈Ω |X>i ΘXj | < M is
guaranteed for all Θ ∈ P(M) and design matrices X satisfying either of the
following

• ‖XjX
>
i ‖∞ ≤ 1,

• ‖Θ‖2F < M1 for some M1 > 0 and the block isometry property.

1.4.1 Random designs For random designs, we require the block isometry
property to hold with high probability. Then the results in this article carry
over directly and thus we do not discuss it in full detail. It is well known that
for sparse linear models with the dimension of a target vector p̄ and the sparsity
k̄, the classical restricted isometry property holds for some classes of random
matrices with i.i.d. entries including sub-Gaussian and Bernoulli matrices, see
Mendelson et al. (2008), provided that n̄ & k̄ log(p̄/k̄), and i.i.d. subexponential
random matrices, see Adamczak et al. (2011), provided that n̄ & k̄ log2(p̄/k̄).
In the same spirit, the design matrices with independent entries following sub-
Gaussian, subexponential or Bernoulli distributions can be shown to satisfy the
block isometry property, cf. Wang et al. (2016a), provided that the number of
observed edges in the network satisfies N & k2 log2(d/k) for sub-Gaussian and
subexponential designs and N & k2 log(d/k) for Bernoulli designs.
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2. MATRIX LOGISTIC REGRESSION

The log-likelihood for this problem is

`Y (Θ) = −
∑

(i,j)∈Ω

ξ(s(i,j)X
>
i ΘXj) ,

where s(i,j) = 2Y(i,j) − 1 is a sign variable that depends on the observations Y
and ξ : x 7→ log(1 + ex) is a softmax function, convex on R. As a consequence,
the negative log-likelihood −`Y is a convex function of Θ. Denoting by ` the
expectation IEΘ? [`Y ], we recall the classical expressions for all Θ ∈ Sd

`(Θ) = `(Θ?)−
∑

(i,j)∈Ω

KL(πij(Θ?), πij(Θ))

= `(Θ?)− KL(PΘ? ,PΘ) ,

where we recall πij(Θ) = σ(X>i ΘXj), and

`Y (Θ) = `(Θ) + 〈〈∇ζ,Θ〉〉F ,

where ζ is a stochastic component of the log-likelihood with constant gradient
∇ζ ∈ Rd×d given by ∇ζ =

∑
(i,j)∈Ω(Y(i,j) − πij(Θ?))XjX

>
i , which is a sum of

independent centered random variables.

2.1 Penalized logistic loss

In a classical setting where d is fixed and N grows, the maximiser of `Y -
the maximum likelihood estimator - is an accurate estimator of Θ?, provided
that it is possible to identify Θ from PΘ (i.e. if the Xi are well conditioned).
We are here in a high-dimensional setting where d2 � N , and this approach is
not directly possible. Our parameter space indicates that the intrinsic dimension
of our problem is truly much lower in terms of rank and block-sparsity. Our
assumption on the conditioning of the Xi is tailored to this structural assumption.
In the same spirit, we also modify our estimator in order to promote the selection
of elements of low rank and block-sparsity. Following the ideas of Birgé and
Massart (2007) and Abramovich and Grinshtein (2016), we define the following
penalized maximum likelihood estimator

(2.1) Θ̂ ∈ argmin
Θ∈P(M)

{
− `Y (Θ) + p(Θ)

}
,

with a penalty p defined as

(2.2) p(Θ) = g(rank(Θ), ‖Θ‖0,0) , and g(R,K) = cKR+ cK log
(de
K

)
,

where c > 0 is a universal constant and to be specified further. The proof of
the following theorem is based on Dudley’s integral argument combined with
Bousquet’s inequality and is deferred to the Appendix.

Theorem 10. Assume the design matrix X satisfies max(i,j)∈Ω |X>i Θ?Xj | <
M for some M > 0 and all Θ? in a given class, and the penalty term p(Θ)
satisfies (2.2) with the constants c ≥ c1/L, c1 > 1, L given in (1.4). Then for
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the penalised MLE estimator Θ̂, the following non-asymptotic upper bound on the
expectation of the Kullback-Leibler divergence between the measures PΘ? and PΘ̂
holds

(2.3) sup
Θ?∈Pk,r(M)

1

N
IE[KL(PΘ? ,PΘ̂)] ≤ C1

kr

N
+ C1

k

N
log
(de
k

)
,

where C1 > 3c is some universal constant for all k = 1, ..., d and r = 1, ..., k.

Remark 11. Random designs with i.i.d. entries following sub-Gaussian, Bernoulli
and subexponential distributions discussed in Section 1.4.1 yield the same rate as
well. It can formally be shown using standard conditioning arguments (see, e.g.
Nickl and van de Geer, 2013).

Corollary 12. Assume the design matrix X satisfies the block isometry
property from Definition 3 and max(i,j)∈Ω |X>i Θ?Xj | < M for some M > 0 and
all Θ? in a given class, and the penalty term p(Θ) is as in Theorem 10. Then for
the penalised MLE estimator Θ̂, the following non-asymptotic upper bound on the
rate of estimation holds

sup
Θ?∈Pk,r(M)

IE
[
‖Θ̂−Θ?‖2F

]
≤ C1

L(M)
(
1−∆Ω,2k(X)

)(kr
N

+
k

N
log
(de
k

))
,

where C1 > 3c is some universal constant for all k = 1, ..., d and r = 1, ..., k.

Let us define rank-constrained maximum likelihood estimators with bounded
block size as

Θ̂k,r ∈ argmin
Θ∈Pk,r(M)

{−`Y (Θ)} .

It is intuitively clear that without imposing any regularisation on the likelihood
function, the maximum likelihood approach selects the most complex model. In
fact, the following result holds.

Theorem 13. Assume the design matrix X satisfies the block isometry prop-
erty from Definition 3 and max(i,j)∈Ω |X>i Θ?Xj | < M for some M > 0 and all Θ?

in a given class. Then for the maximum likelihood estimator Θ̂k,r, the following
non-asymptotic upper bound on the rate of estimation holds

sup
Θ?∈Pk,r(M)

IE
[
‖Θ̂k,r −Θ?‖2F

]
≤ C3

L(M)
(
1−∆Ω,2k(X)

)(kr
N

+
k

N
log
(de
k

))
,

for all k = 1, ..., d and r = 1, ..., k and some constant C3 > 0.

Remark 14. The penalty (2.2) belongs to the class of the so-called minimal
penalties, cf. Birgé and Massart (2007). In particular, a naive MLE approach with
p(Θ) = 0 in (2.1) yields a suboptimal estimator as it follows from Theorem 13.



OPTIMAL LINK PREDICTION WITH MATRIX LOGISTIC REGRESSION 11

2.2 Convex relaxation

In practice, computation of the estimator (2.1) is often infeasible. In essence,
in order to compute it, we need to compare the likelihood functions over all
possible subspaces Pk,r(M). Sophisticated step-wise model selection procedures
allow to reduce the number of analysed models. However, they are not feasible
in a high-dimensional setting either. We here consider the following estimator

(2.4) Θ̂Lasso = argmin
Θ∈Sd

{−`Y (Θ) + λ‖Θ‖1,1} ,

with λ > 0 to be chosen further, which is equivalent to the logistic Lasso on
vec(Θ). Using standard arguments, cf. Example 1 in van de Geer (2008), com-
bined with the block isometry property the following result immediately follows.

Theorem 15. Assume the design matrix X satisfies the block isometry prop-
erty from Definition 3 and max(i,j)∈Ω |X>i Θ?Xj | < M for some M > 0 and all
Θ? in a given class. Then for λ = C4

√
log d, where C4 > 0 is an appropriate

universal constant, the estimator (2.4) satisfies

(2.5) sup
Θ?∈Pk,r(M)

IE
[
‖Θ̂Lasso −Θ?‖2F

]
≤ C5

L(M)
(
1−∆Ω,2k(X)

) k2

N
log d ,

for all k = 1, ..., d and r = 1, ..., k and some universal constant C5 > 0.

As one could expect the upper bound on the rate of estimation of our feasible
estimator is independent of the true rank r. It is natural, when dealing with a
low-rank and block-sparse objective matrix, to combine the nuclear penalty with
either the (2, 1)-norm penalty or the (1, 1)-norm penalty of a matrix, cf. Bunea
et al. (2012); Giraud (2011); Koltchinskii et al. (2011); Richard et al. (2012). In
our setting, it can be easily shown that combining the (1, 1)-norm penalty and
the nuclear penalty yields the same rate of estimation (k2/N) log d. This appears
to be inevitable in view of a computational lower bound, obtained in Section 3,
which is independent of the rank as well. In particular, these findings partially
answer a question posed in Section 6.4.4 in Giraud (2014).

2.3 Prediction

In applications, as new users join the network, we are interested in predicting
the probabilities of the links between them and the existing users. It is natural to
measure the prediction error of an estimator Θ̂ by IE

[∑
(i,j)∈Ω(πij(Θ̂)−πij(Θ?))

2
]

which is controlled according to the following result using the smoothness of the
logistic function σ.

Theorem 16. Under Assumption 6, we have the following rate for estimating
the matrix of probabilities Σ? = X>Θ?X ∈ Rn×n with the estimator Σ̂ = X>Θ̂X ∈
Rn×n:

sup
Θ?∈Pk,r(M)

1

2N
IE
[
‖Σ̂− Σ?‖2F,Ω

]
≤ C1

L(M)

(kr
N

+
k

N
log
(de
k

))
,

with the constant C1 from (2.3). The rate is minimax optimal, i.e. a minimax
lower bound of the same asymptotic order holds for the prediction error of esti-
mating the matrix of probabilities Σ? = X>Θ?X ∈ Rn×n.
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2.4 Information-theoretic lower bounds

The following result demonstrates that the minimax lower bound on the rate
of estimation matches the upper bound in Theorem 10 implying that the rate of
estimation is minimax optimal.

Theorem 17. Let the design matrix X satisfy the block isometry property.
Then for estimating Θ? ∈ Pk,r(M) in the matrix logistic regression model, the
following lower bound on the rate of estimation holds

inf
Θ̂

sup
Θ?∈Pk,r(M)

IE
[
‖Θ̂−Θ?‖2F

]
≥ C2

(1 + ∆Ω,2k(X))

(kr
N

+
k

N
log
(de
k

))
,

where the constant C2 > 0 is independent of d, k, r and the infimum extends over
all estimators Θ̂.

Remark 18. The lower bounds of the same order hold for the expectation
of the Kullback-Leibler divergence between the measures PΘ? and PΘ̂ and the
prediction error of estimating the matrix of probabilities Σ? = X>Θ?X ∈ Rn×n.

3. COMPUTATIONAL LOWER BOUNDS

In this section, we investigate whether the lower bound in Theorem 17 can be
achieved with an estimator computable in polynomial time. The fastest rate of
estimation attained by a (randomised) polynomial-time algorithm in the worst-
case scenario is usually referred to as a computational lower bound. Recently, the
gap between computational and statistical lower bounds has attracted a lot of at-
tention in the statistical community. We refer to Berthet and Rigollet (2013a,b);
Chen (2015); Chen and Xu (2016); Gao et al. (2017); Hajek et al. (2015); Ma
and Wu (2015); Wang et al. (2016b); Zhang and Dong (2017) for computational
lower bounds in high-dimensional statistics based on the planted clique problem
(see below), Berthet and Ellenberg (2015) using hardness of learning parity with
noise Oymak et al. (2015) for denoising of sparse and low-rank matrices, Agarwal
(2012) for computational trade-offs in statistical learning, as well as Zhang et al.
(2014) for worst-case lower bounds for sparse estimators in linear regression, as
well as Bruer et al. (2015); Chandrasekaran and Jordan (2013) for another ap-
proach on computational trade-offs in statistical problems, as well as Berthet and
Chandrasekaran (2016); Berthet and Perchet (2017) on the management of these
trade-offs. In order to establish a computational lower bound for the block-sparse
matrix logistic regression, we exploit a reduction scheme from Berthet and Rigol-
let (2013a): we show that detecting a subspace of Pk,r(M) can be computationally
as hard as solving the dense subgraph detection problem.

3.1 The dense subgraph detection problem

Although our work is related to the study of graphs, we recall for absolute
clarity the following notions from graph theory. A graph G = (V,E) is a non-
empty set V of vertices, together with a set E of distinct unordered pairs {i, j}
with i, j ∈ V , i 6= j. Each element {i, j} of E is an edge and joins i to j. The
vertices of an edge are called its endpoints. We consider only undirected graphs
with neither loops nor multiple edges. A graph is called complete if every pair
of distinct vertices is connected. A graph G′ = (V ′, E′) is a subgraph of a graph
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G = (V,E) if V ′ ⊆ V and E′ ⊆ E. A subgraph C is called a clique if it is complete.
The problem of detecting a maximum clique, or all cliques, the so-called Clique
problem, in a given graph is known to be NP-complete, cf. Karp (1972).

The Planted Clique problem, motivated as an average case version of the
Clique problem, can be formalised as a decision problem over random graphs,
parametrised by the number of vertices n and the size of the subgraph k. Let
Gn denote the collection of all graphs with n vertices and G(n, 1/2) denote dis-
tribution of Erdös-Rényi random graphs, uniform on Gn, where each edge is
drawn independently at random with probability 1/2. For any k ∈ {1, ..., n}
and q ∈ (1/2, 1], let G(n, 1/2, k, q) be a distribution on Gn constructed by first
picking k vertices independently at random and connecting all edges in-between
with probability q, and then joining each remaining pair of distinct vertices by
an edge independently at random with probability 1/2. Formally, the Planted
Clique problem refers to the hypothesis testing problem of

(3.1) H0 : A ∼ G(n, 1/2) vs. H1 : A ∼ G(n, 1/2, k, 1) ,

based on observing an adjacency matrix A ∈ Rn×n of a random graph drawn
from either G(n, 1/2) or G(n, 1/2, k, 1).

One of the main properties of the Erdös-Rényi random graph were studied in
Erdős and Rényi (1959), as well as in Grimmett and McDiarmid (1975), who in
particular proved that the size of the largest clique in G(n, 1/2) is asymptotically
close to 2 log2 n almost surely. On the other hand, Alon et al. (1998) proposed a
spectral method that for k > c

√
n detects a planted clique with high probability

in polynomial time. Hence the most intriguing regime for k is

(3.2) 2 log2 n ≤ k ≤ c
√
n .

The conjecture that no polynomial-time algorithm exists for distinguishing be-
tween hypotheses in (3.1) in the regime (3.2) with probability tending to 1 as
n → ∞ is the famous Planted Clique conjecture in complexity theory. Its varia-
tions have been used extensively as computational hardness assumptions in sta-
tistical problems, see Berthet and Rigollet (2013b); Cai and Wu (2018); Gao et al.
(2017); Wang et al. (2016b).

The Planted Clique problem can be reduced to the so-called dense subgraph
detection problem of testing the null hypothesis in (3.1) against the alternative
H1 : A ∼ G(n, 1/2, k, q), where q ∈ (1/2, 1]. This is clearly a computationally
harder problem. In this paper, we assume the following variation of the Planted
Clique conjecture which is used to establish a computational lower bound in the
matrix logistic regression model.

Conjecture 19 (The dense subgraph detection conjecture). For any se-
quence k = kn such that k ≤ nβ for some 0 < β < 1/2, and any q ∈ (1/2, 1],
there is no (randomised) polynomial-time algorithm that can correctly identify the
dense subgraph with probability tending to 1 as n → ∞, i.e. for any sequence of
(randomised) polynomial-time tests (ψn : Gn → {0, 1})n, we have

lim inf
n→∞

{
P0(ψn(A) = 1) + P1(ψn(A) = 0)

}
≥ 1/3 .
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3.2 Reduction to the dense subgraph detection problem and a
computational lower bound

Consider the vectors of explanatory variables Xi = N1/4ei, i = 1, ..., n and
assume without loss of generality that the observed set of edges Ω in the matrix
logistic regression model consists of the interactions of the n nodes Xi, i.e. it
holds N = |Ω| =

(
n
2

)
. It follows from the matrix logistic regression modelling

assumption (1.1) that the Erdös-Rényi graph G(n, 1/2) corresponds to a random
graph associated with the matrix Θ0 = 0 ∈ Rd×d. Let Gl(k) be a subset of
Pk,1(M) with a fixed support l of the block. In addition, let GαNk ⊂ Pk,1(M) be
a subset consisting of the matrices Θl ∈ Gl(k), l = 1, ...,K, K =

(
n
k

)
such that all

elements in the block of a matrix Θl equal some αN = α/
√
N > 0, see Figure 2.

Then we have

P
(
(i, j) ∈ E|Xi, Xj) =

1

1 + e−X
>
i ΘXj

=
1

1 + e−α
,

for all Θ ∈ GαNk . Therefore, the testing problem

(3.3) H0 : Y ∼ PΘ0 vs. H1 : Y ∼ PΘ,Θ ∈ GαNk ,

where Y ∈ {0, 1}N is the adjacency vector of binary responses in the matrix
logistic regression model, is reduced to the dense subgraph detection problem with
q = 1/(1 + e−α). This reduction scheme suggests that the computational lower
bound for separating the hypotheses in the dense subgraph detection problem
mimics the computational lower bound for separating the hypotheses in (3.3) in
the matrix logistic regression model. The following theorem exploits this fact in
order to establish a computational lower bound of order k2/N for estimating the
matrix Θ? ∈ Pk,r(M).

Theorem 20. Let Fk be any class of matrices containing GαNk ∪Θ0 from the
reduction scheme. Let c > 0 be a positive constant and f(k, d,N) be a real-valued
function satisfying f(k, d,N) ≤ ck2/N for k = kn < nβ, 0 < β < 1/2 and a
sequence d = dn, for all n > m0 ∈ IN. If Conjecture 19 holds, for some the design
X that fulfils the block isometry property from Definition 3, there is no estimator of
Θ? ∈ Fk, that attains the rate f(k, d,N) for the Frobenius norm risk, and can be
evaluated using a (randomised) polynomial-time algorithm, i.e. for any estimator
Θ̂, computable in polynomial time, there exists a sequence (k, d,N) = (kn, dn, N),
such that

(3.4)
1

f(k, d,N)
sup

Θ?∈Fk
IE
[
‖Θ̂−Θ?‖2F

]
→∞ ,

as n→∞. Similarly, for any estimator Θ̂, computable in polynomial time, there
exists a sequence (k, d,N) = (kn, dn, N), such that

(3.5)
1

f(k, d,N)
sup

Θ?∈Fk

1

N
IE
[
‖Σ̂− Σ?‖2F,Ω

]
→∞ ,

for the prediction error of estimating Σ? = X>Θ?X.
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k
n

d

αN

GαN
k 3 Θ =

Figure 2: The construction of matrices GαNk used in the reduction scheme.

Remark 21. Thus the computational lower bound for estimating the matrix
Θ? in the matrix logistic regression model is of order k2/N compared to the mini-
max rate of estimation of order kr/N+(k/N) log(de/k) and the rate of estimation
(k2/N) log(d) for the Lasso estimator Θ̂Lasso, cf. Figure 1. Hence the computa-
tional gap is most noticeable for the matrices of rank 1. Furthermore, as a simple
consequence of this result, the corresponding computational lower bound for the
prediction risk of estimating Σ? = X>Θ?X is k2/N as well.

Proof. We here provide a proof of the computational lower bound on the
prediction error (3.5) for convenience. The bound on the estimation error (3.4)
is straightforward to show by utilizing the block isometry property. Assume that
there exists a hypothetical estimator Θ̂ computable in polynomial time that at-
tains the rate f(k, d,N) for the prediction error, i.e. such that it holds that

lim sup
n→∞

1

f(k, d,N)
sup

Θ?∈Fk

1

N
IE
[
‖X>(Θ̂−Θ?)X‖2F,Ω

]
≤ b <∞ ,

for all sequences (k, d,N) = (kn, dn, N) and a constant b. Then by Markov’s
inequality, we have

(3.6)
1

N
‖X>(Θ̂−Θ?)X‖2F,Ω ≤ uf(k, d,N) ,

for some numeric constant u > 0 with probability 1 − b/u for all Θ? ∈ Fk.
Following the reduction scheme, we consider the design vectors Xi = N1/4ei,
i = 1, ..., n and the subset of edges Ω, such that

(3.7)
1

N
‖X>(Θ̂−Θ?)X‖2F,Ω =

∑
(i,j)∈Ω

(Θ̂ij −Θ?ij)
2 = ‖Θ̂−Θ?‖2F,Ω ,

for any Θ? ∈ GαNk . Note, that the design vectors Xi = N1/4ei, i = 1, ..., n clearly
satisfy Assumption 6. Thus, in order to separate the hypotheses

(3.8) H0 : Y ∼ P0 vs. H1 : Y ∼ PΘ,Θ ∈ GαNk ,

it is natural to employ the following test

(3.9) ψ(Y ) = 1
(
‖Θ̂‖F,Ω ≥ τd,k(u)

)
,

where τ2
d,k(u) = uf(k, d,N). The type I error of this test is controlled automati-

cally due to (3.6) and (3.7), P0(ψ = 1) ≤ b/u. For the type II error, we obtain

sup
Θ∈GαNk

PΘ(ψ = 0) = sup
Θ∈GαNk

PΘ

(
‖Θ̂‖F,Ω < τd,k(u)

)
≤ sup

Θ∈GαNk

PΘ

(
‖Θ̂−Θ‖2F,Ω > ‖Θ‖2F,Ω − τ2

d,k(u)
)
≤ b/u ,
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provided that
k(k − 1)α2

N/2 ≥ 2τ2
d,k(u) = 2uf(k, d,N) ,

which is true in the regime k ≤ nβ, β < 1/2, and α2 ≥ 4u/c, (hence α2
N ≥

4u/(cN) ) by the definition of the function f(k, d,N). Putting the pieces together,
we obtain

lim sup
n→∞

{
P0(ψ(Y ) = 1) + sup

Θ∈GαNk

PΘ(ψ(Y ) = 0)
}
≤ 2b/u < 1/3 ,

for u > 6b. Hence, the test (3.9) separates the hypotheses (3.8). This contradicts
Conjecture 19 and implies (3.5).

4. CONCLUDING REMARKS

Our results shed further light on the emerging topic of statistical and compu-
tational trade-offs in high-dimensional estimation. The matrix logistic regression
model is very natural to study the connection between statistical accuracy and
computational efficiency as the model is based on the study of a generative model
for random graphs. It is also an extension of lower bound for all statistical pro-
cedures to a model with covariates, the first of its kind.

Our fundings suggest that the block-sparsity is a limiting model selection cri-
terion for polynomial-time estimation in the logistic regression model. That is,
imposing further structure, like an additional low-rank constraint, and thus re-
ducing the number of studied models yields an expected gain in the minimax
rate, but that gain can never be achieved by a polynomial-time algorithm. In
this setting, this implies that with a larger parameter space, while the statistical
rates might be worse, they might be closer to those that are computationally
achievable. As an illustration, both efficient and minimax optimal estimation is
possible for estimating sparse vectors in the high-dimensional linear regression
model, see, for example, SLOPE for achieving the exact minimax rate in Bellec
et al. (2018); Bogdan et al. (2015), extending upon previous results on the Danzig
selector and Lasso in Bickel et al. (2009); Candes and Tao (2007).

The logistic regression is also a representative of a large class of generalised
linear models. Furthermore, the proof of the minimax lower bound on the rate of
estimation in Theorem 17 can be extended to all generalised linear models. The
combinatorial estimator (2.1) can well be used to achieve the minimax rate. The
computational lower bound then becomes a delicate issue. A more sophisticated
reduction scheme is needed to relate the dense subgraph detection problem to
an appropriate testing problem for a generalised linear model. Approaching this
question might require notions of noise discretisation and Le Cam equivalence
studied in Ma and Wu (2015).

An interesting question is whether it is possible to adopt polynomial-time
algorithms available for detecting a dense subgraph for estimating the target
matrix in the logistic regression model in all sparsity regimes. A common idea
behind those algorithms is to search a dense subgraph over the vertices of a
high degree and thus substantially reduce the number of compared models of
subgraphs. The network we observe in the logistic regression model is generated
by a sparse matrix. We may still observe a fully connected network which is
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generated by a small block in the target matrix. Therefore, it is not yet clear
how to adopt algorithms for dense subgraph detection to submatrix detection. It
remains an open question to establish whether these results can be extended to
any design matrix, and all parameter regimes.
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APPENDIX A: PROOFS

A.1 Some geometric properties of the likelihood

Let us recall the stochastic component of the likelihood function

ζ(Θ) = `Y (Θ)− `(Θ) =
∑

(i,j)∈Ω

(
Y(i,j) − πij(Θ?)

)
X>i ΘXj ,

which is a linear function in Θ. The deviation of the gradient ∇ζ of the stochastic
component is governed by the deviation of the independent Bernoulli random
variables εi,j = Y(i,j) − IE[Y(i,j)] = Y(i,j) − πij(Θ?), (i, j) ∈ Ω. Let us introduce an
upper triangular matrix EΩ = (εi,j)(i,j)∈Ω with zeros on the complement set Ωc.
In this notation, we have ζ(Θ) = 〈〈ζ,Θ〉〉F , with

∇ζ =
∑

(i,j)∈Ω

εi,jXjX
>
i = X EΩX> ∈ Rd×d .

In particular,∇ζ is sub-Gaussian with parameter
∑

(i,j)∈Ω ‖XjX
>
i ‖2F /4 = ‖X>X‖2F,Ω/4,

i.e. it holds for the moment generating function of 〈〈ζ,B〉〉F for any B ∈ Rd×d

and σ2 = 1/4,

ϕ〈〈ζ,B〉〉
F

(t) := IE
[

exp(t〈〈ζ,B〉〉F )
]

=
∏

(i,j)∈Ω

IE
[

exp(tεi,j〈〈XjX
>
i , B〉〉F )

]
≤

∏
(i,j)∈Ω

exp
(
t2σ2〈〈XjX

>
i , B〉〉F

2
/2
)

= exp
(
tσ2‖X>BX‖2F,Ω/2

)
.(A.1)

We shall be frequently using versions of the following inequality, which is based
on the fact that ∇`(Θ?) = 0 ∈ Rd×d, the Taylor expansion and (1.5), and holds
for any Θ ∈ P(M),

`(Θ?)− `(Θ) =
1

2

∑
(i,j)∈Ω

(
σ′(X>i Θ0Xj)〈〈XjX

>
i ,Θ? −Θ〉〉2

)
≥ L

2

∑
(i,j)∈Ω

〈〈XjX
>
i ,Θ? −Θ〉〉2F =

L
2
‖X>(Θ? −Θ)X‖2F,Ω ,(A.2)

where Θ0 ∈ [Θ,Θ?] element-wise. Furthermore, using that supt∈R σ
′(t) ≤ 1/4, we

obtain for all Θ ∈ P(M)

`(Θ?)− `(Θ) ≤ 1

8
‖X>(Θ? −Θ)X‖2F,Ω .

We shall also be using the bounds

max
(i,j)∈Ω

(
εi,jX

T
i (Θ−Θ?)Xj

)
≤ ‖X>(Θ−Θ?)X‖F,Ω , a.s. ,(A.3)

Var
(
〈〈EΩ,X>(Θ−Θ?)X〉〉F

)
≤ 1

4
‖X>(Θ−Θ?)X‖2F,Ω .(A.4)
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A.2 Entropy bounds for some classes of matrices

Recall that an ε-net of a bounded subset K of some metric space with a
metric ρ is a collection {K1, ...,KNε} ∈ K such that for each K ∈ K, there
exists i ∈ {1, ..., Nε} such that ρ(K,Ki) ≤ ε. The ε-covering number N(ε,K, ρ)
is the cardinality of the smallest ε-net. The ε-entropy of the class K is defined
by H(ε,K, ρ) = log2N(ε,K, ρ). The following statement is adapted from Lemma
3.1 in Candes and Plan (2011).

Lemma 22. Let T0 := {Θ ∈ Rk×k : rank(Θ) ≤ r, ‖Θ‖F ≤ 1}. Then it holds
for any ε > 0

H(ε,T0, ‖ · ‖F ) ≤
(
(2k + 1)r + 1

)
log
(9

ε

)
.

A.3 Proof of Theorem 10 and Theorem 16

It suffices to show the following uniform deviation inequality

(A.5) sup
Θ?∈Pk,r(M)

PΘ?

(
`(Θ?)− `(Θ̂) + p(Θ̂) > 2p(Θ?) +R2

t

)
≤ e−cRt ,

for any Rt > 0 and some numeric constant c > 0. Indeed, then taking R2
t = p(Θ?),

it follows that `(Θ?)− `(Θ̂) ≤ 3p(Θ?) uniformly for all Θ? in the considered class

with probability at least 1 − e−c
√
p(Θ?). The upper bound (2.3) of Theorem 10

the follows directly integrating the deviation inequality (A.5), while the upper
bound on the prediction error in Theorem 16 further follows using (A.2) and the
smoothness of the logistic function, supt∈R σ

′(t) ≤ 1/4. Define

(A.6) τ2(Θ; Θ?) := `(Θ?)− `(Θ) + p(Θ) , GR(Θ?) := {Θ : τ(Θ; Θ?) ≤ R} .

The inequality (A.5) clearly holds on the event {τ2(Θ̂; Θ?) ≤ 2p(Θ?)}. In view of
`Y (Θ̂)− p(Θ̂) ≥ `Y (Θ?)− p(Θ?), we have on the complement:

〈〈EΩ,X>(Θ̂−Θ?)X〉〉 ≥ `(Θ?)− `(Θ̂) + p(Θ̂)− p(Θ?) ≥
1

2
τ2(Θ̂; Θ?) .

Therefore, for any Θ? ∈ Pk,r(M), we have

PΘ?

(
τ2(Θ̂; Θ?) > 2p(Θ?) +R2

t

)
≤ PΘ?

(
sup

τ(Θ;Θ?)≥Rt

〈〈EΩ,X>(Θ−Θ?)X〉〉
τ2(Θ; Θ?)

≥ 1

2

)
.

We now apply the so-called “peeling device” (or “slicing” as it sometimes called
in the literature). The idea is to “slice” the set τ(Θ; Θ?) ≥ Rt into pieces on
which the penalty term p(Θ) is fixed and the term `(Θ?) − `(Θ) is bounded. It
follows,

PΘ?

(
sup

τ(Θ;Θ?)≥Rt

〈〈EΩ,X>(Θ−Θ?)X〉〉
τ2(Θ; Θ?)

≥ 1

2

)

≤
d∑

K=1

K∑
R=1

∞∑
s=1

PΘ?

(
sup

Θ∈G2sRt
(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈EΩ,X>(Θ−Θ?)X〉〉 ≥
1

8
22sR2

t

)
.

(A.7)
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On the set {Θ ∈ G2sRt(Θ?), k(Θ) = K, rank(Θ) = R}, it holds by the definitions
(A.6)

`(Θ?)− `(Θ) ≤ 22sR2
t − p(K,R) ,

and therefore using (A.2), this implies

(A.8) ‖X>(Θ? −Θ)X‖F,Ω ≤ Z(K,R, s) , Z2(K,R, s) =
2

L
(
22sR2

t − p(K,R)
)
.

Let us fix the location of the block, that is the support of a matrix Θ′ ∈ G1 :=
{Θ ∈ Rd×d : k(Θ) = K, rank(Θ) = R} belongs to the upper-left block of size
K×K. Then following the lines of the proof of Lemma 22 and using the singular
value decomposition, we derive

H(ε, {X>Θ′X : Θ′ ∈ G1, ‖X>Θ′X‖F,Ω ≤ B}, ‖ · ‖F,Ω) ≤
(
(2K+1)R+1

)
log
(9B

ε

)
.

Consequently, for the set T := {X>(Θ−Θ?)X : Θ ∈ Rd×d, rank(Θ) = R, k(Θ) =
K, ‖X>(Θ? −Θ)X‖F,Ω ≤ Z(K,R, s)}, we obtain

H(ε,T, ‖ · ‖F,Ω) ≤
(
(2K + 1)R+ 1

)
log
(9Z(K,R, s)

ε

)
+K log

(de
K

)
.

Denote t(K,R) :=
√
KR+

√
K log

(
de
K

)
. By Dudley’s entropy integral bound, see

Dudley (1967) and Giné and Nickl (2016) for a more recent reference, we then
have

IE
[

sup
Θ∈G2sRt

(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈EΩ,X>(Θ−Θ?)X〉〉
]
≤ C ′

∫ Z(K,R,s)

0

√
H(ε,T, ‖ · ‖Ω)dε

≤ C ′′
√
kr

∫ 9Z(K,R,s)

0

√
log
(9Z(K,R, s)

ε

)
dε+ 9C ′′Z(K,R, s)

√
K log

(de
K

)
≤ CZ(K,R, s)t(K,R) ,

for some universal constant C > 0. Furthermore, by Bousquet’s version of Tala-
grand’s inequality, see Theorem A.10, in view of the bounds (A.3) and (A.4), we
have for all u > 0

PΘ?

(
sup

Θ∈G2sRt
(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈EΩ,X>(Θ−Θ?)X〉〉 ≥ CZ(K,R, s)t(K,R)

+

√(1

2
Z2(K,R, s) + 4CZ2(K,R, s)t(K,R)

)
u+

Z(K,R, s)u

3

)
≤ e−u .

Taking u(K,R, s) := L1/2Z(K,R, s)+L−1/2t(K,R)+2 log d and using inequalities√
c1 + c2 ≤

√
c1 +

√
c2 and

√
c1c2 ≤ 1

2(c1ε+ c2
ε ), which hold for any c1, c2, ε > 0,

we obtain

PΘ?

(
sup

Θ∈G2sRt
(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈EΩ,X>(Θ−Θ?)X〉〉

≥ 1

16
LZ2(K,R, s) + C2

1 t
2(K,R)/L

)
≤ e−u(K,R,s) ,
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for some numeric constant C1 > 0. Plugging this back into (A.7) and using (A.8),
we obtain

PΘ?

(
sup

Θ∈G2sRt
(Θ?)

k(Θ)=K, rank(Θ)=R

〈〈EΩ,X>(Θ−Θ?)X〉〉 ≥
1

8
22sR2

t

)
≤ e−u(K,R,s) ,

for some numeric constant C2 > 0, provided that

(A.9)
1

16
LZ2(K,R, s) +

C2
1

L
t2(K,R) ≤ 1

8
22sR2

t =
1

16
LZ2(K,R, s) + 8p(K,R) ,

which is satisfied for p(K,R) ≥ (C2
1/L)t2(K,R). Therefore,

PΘ?

(
sup

τ(Θ;Θ?)≥Rt

〈〈EΩ,X>(Θ−Θ?)X〉〉
τ2(Θ; Θ?)

≥ 1

2

)
≤

d∑
K=1

K∑
R=1

∞∑
s=1

e−u(K,R,s) ≤ e−cRt ,

for some numeric constants c > 0 using (A.9), which concludes the proof.
The following prominent result is due to Bousquet (2002).

Theorem 23 (Bousquet’s version of Talagrand’s inequality). Let (B,B) be a
measurable space and let ε1, ..., εn be independent B-valued random variables.
Let F be a countable set of measurable real-valued functions on B such that
f(εi) ≤ b <∞ a.s. and IEf(εi) = 0 for all i = 1, ..., n, f ∈ F . Let

S := sup
f∈F

n∑
i=1

f(εi) , v := sup
f∈F

n∑
i=1

IE[f2(εi)].

Then for all u > 0, it holds that

(A.10) P
(
S − IE[S] ≥

√
2(v + 2bIE[S])u+

bu

3

)
≤ e−u .

A.4 Proof of Theorem 13

For the MLE Θ̂k,r, it clearly holds `Y (Θ̂k,r) ≥ `Y (Θ?) implying

`(Θ?)− `(Θ̂k,r) ≤ 〈〈EΩ,X>(Θ̂k,r −Θ?)X〉〉.

Furthermore, in view of (A.2), we derive

L
2
‖X>(Θ̂k,r −Θ?)X‖F,Ω ≤

〈〈EΩ,X>(Θ̂k,r −Θ?)X〉〉
‖X>(Θ̂k,r −Θ?)X‖F,Ω

(A.11)

≤ sup
Θ∈Pk,r(M)

〈〈EΩ,X>(Θ−Θ?)X〉〉
‖X>(Θ−Θ?)X‖F,Ω

.(A.12)

Following the lines of Section A.3, by Dudley’s integral we next obtain

IE
(

sup
Θ∈Pk,r(M)

〈〈EΩ,X>(Θ−Θ?)X〉〉
‖X>(Θ−Θ?)X‖F,Ω

)
≤ c
√
kr + c

√
k log

(de
k

)
,

for some universal constant c > 0. Plugging this bound back into (A.12) and
using the block isometry property yields the desired assertion.
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A.5 Proof of Theorem 17

Proof. The proof is split into two parts. First, we show a lower bound of the
order kr and then a lower bound of the order k log(de/k). A simple inequality
(a+ b)/2 ≤ max{a, b} for all a, b > 0 then completes the proof. Both parts of the
proof exploit a version of remarkable Fano’s inequality given in Proposition 24 to
follow, cf. Section 2.7.1 in Tsybakov (2008).

1. A bound kr. The proof of this bound is similar to the proof of a minimax
lower bound for estimating a low-rank matrix in the trace-norm regression model
given in Theorem 5 in Koltchinskii et al. (2011). For the sake of completeness,
we provide the details here. Consider a subclass of matrices

C =
{
A ∈ Rk×r : ai,j = {0, αN}, 1 ≤ i ≤ k, 1 ≤ j ≤ r

}
,

α2
N =

γ log 2

1 + ∆Ω,2k(X)

r

2kN
,

where γ > 0 is a positive constant, ∆Ω,2k(X) > 0 is the the block isometry
constant from Definition 3 and bxc denotes the integer part of x. Further define

B(C) =
{1

2
(A+A>) : A = (Ã| · · · |Ã|O) ∈ Rk×k, Ã ∈ C

}
,

where O denotes the k × (k − rbk/rc) zero matrix. By construction, any matrix
Θ ∈ B(C) is symmetric, has rank at most r with entries bounded by αN . Applying
a standard version of the Varshamov-Gilbert lemma, see Lemma 2.9 in Tsybakov
(2008), there exists a subset B◦ ⊂ B(C) of cardinality card(B◦) ≥ 2kr/16 + 1 such
that

kr

16

(αN
2

)2⌊k
r

⌋
≤ ‖Θu −Θv‖2F ≤ k2α2

N ,

for all Θu,Θv ∈ B◦. Thus B◦ is a 2δ-separated set in the Frobenius metric with
δ2 = kr

64

(
αN
2

)2bkr c. The Kullback-Leibler divergence between the measures PΘu

and PΘv , Θu,Θv ∈ B◦, u 6= v, is upper bounded as

KL(PΘu ,PΘv) = IEPΘu
[`Y (Θu)]− IEPΘu

[`Y (Θv)] ≤
1

8

∑
(i,j)∈Ω

〈〈XjX
>
i ,Θu −Θv〉〉2F

≤
1 + ∆Ω,2k(X)

8
k2α2

NN .

Taking γ > 0 small enough, we obtain

1 + ∆Ω,2k(X)

8
k2α2

NN + log 2 =
kr

16
γ log 2 + log 2 = log(2

kr
16
γ+1) < log(2kr/16 + 1) ,

which, in view of Proposition 24, yields the desired lower bound.
2. A bound k log(de/k). Let K =

(
d
k

)
and consider the set GαNk ⊂ Pk,1(M) from

the reduction scheme in Section 3.2 with

α2
N =

4γ log 2

kN(1 + ∆Ω,2k(X))
log
(de
k

)
,

where γ > 0 is a positive constant. Using simple calculations, we then have
(2k − 1)α2

N ≤ ‖Θu − Θv‖2F ≤ 2k2α2
N for all Θu,Θv ∈ GαNk , u 6= v. Furthermore,

according to Lemma 25 to follow, there exists a subset GαN ,0k ⊂ GαNk such that

c0k
2α2

N ≤ ‖Θu −Θv‖2F ≤ 2k2α2
N ,
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and of cardinality card(GαN ,0k ) ≥ 2ρk log(de/k) + 1 for some ρ > 0 depending on a

constant c0 > 0 and independent of k and d. Thus GαN ,0k is a 2δ-separated set
in the Frobenius metric with δ2 = c0k

2α2
N/4. The Kullback-Leibler divergence

between the measures PΘu and PΘv , Θu,Θv ∈ GαN ,0k , u 6= v, is upper bounded
as

KL(PΘu ,PΘv) = IEPΘu
[`Y (Θu)]− IEPΘu

[`Y (Θv)] ≤
1

8

∑
(i,j)∈Ω

〈〈XjX
>
i ,Θu −Θv〉〉2F

≤
1 + ∆Ω,2k(X)

4
k2α2

NN ,

for all u 6= v and ∆Ω,2k(X) > 0 from Definition 3. As in the first part of the proof,
taking γ > 0 small enough, we obtain

1 + ∆Ω,2k(X)

4
k2α2

NN + log 2 = kγ log(2) log
(de
k

)
+ log 2 = log(2kγ log(de/k)+1)

< log(2ρk log(de/k) + 1) .

The desired lower bound then follows from Proposition 24.

Proposition 24 (Fano’s method). Let {Θ1, ...,ΘJ} be a 2δ-separated set in
Rd×d in the Frobenius metric, meaning that ‖Θk − Θl‖F ≥ 2δ for all elements
Θk,Θl, l 6= k in the set. Then for any increasing and measurable function F :
[0,∞)→ [0,∞), the minimax risk is lower bounded as

inf
Θ̂

sup
Θ

IEPΘ

[
F (‖Θ̂−Θ‖F )

]
≥ F (δ)

(
1−

∑
u,v KL(PΘu ,PΘv)/J

2 + log 2

log J

)
.

Lemma 25 (Variant of the Varshamov-Gilbert lemma). Let G ⊂ Pk,1(M) be
a set of {0, 1}d×d symmetric block-sparse matrices with the size of the block k,
where k ≤ αβd for some α, β ∈ (0, 1). Denote K =

(
d
k

)
the cardinality of G

and ρH(E,E′) =
∑

i,j 1(Ei,j 6= E′i,j) the Hamming distance between two matrices

E,E′ ∈ G. Then there exists a subset G0 = {E(0), ..., E(J)} ⊂ G of cardinality

log J := log(card(G0)) ≥ ρk log(
de

k
) ,

where ρ = α
− log(αβ)(− log β + β − 1) such that

ρH(E(k), E(l)) ≥ ck2 ,

for all k 6= l where c = 2(1− α2) ∈ (0, 2).

Proof. Let E(0) = {0}k×k, D = ck2, and construct the set E1 = {E ∈ G :
ρH(E(0), E) > D}. Next, pick any E(1) ∈ E1 and proceed iteratively so that for a
matrix E(j) ∈ Ej we construct the set

Ej+1 = {E ∈ Ej : ρ(E(j), E) > D} .

Let J denote the last index j for which Ej 6= ∅. It remains to bound the cardinality
J of the constructed set G0 = {E(0), ..., E(J)}. For this, we consider the cardinality
nj of the subset {Ej \ Ej+1}:

nj := #{Ej \ Ej+1} ≤ #{E ∈ G : ρH(E(j), E) ≤ D}.
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For all E,E′ ∈ G, we have

ρH(E,E′) = 2(k2 − (k −m)2) ,

where m ∈ [0, k] corresponds to the number of distinct columns of E (or E′).
Solving the quadratic equation (A.5) for ρH(E,E′) = D = ck2 we obtain

mD = k(1−
√

1− c/2) ,

for the maximum number of distinct columns of a block-sparse matrix E (and
E′) such that ρH(E,E′) ≤ D = ck2 for c ∈ [0, 2]. For instance, in order to get the
distance between matrices 2k2, i.e. c = 2 we need to shift all the k columns (and
consequently rows) and so the number of distinct columns of a matrix is m = k,
and in order to get the minimal possible distance 4k − 2, i.e. c = (4k − 2)/k2 we
need to shift only one column and a corresponding row, i.e. m = 1. Therefore,
for nj in (A.5), we have

nj ≤ #{E ∈ G : ρH(E(j), E) ≤ D} =

mD∑
i=0

(
k

i

)(
d− k
i

)
=

k∑
i=k−mD

(
k

i

)(
d− k
k − i

)
.

Together with an evident equality
∑J

j=0 nj = K =
(
d
k

)
, this implies

k∑
i=k−mD

(
k

i

)(
d− k
k − i

)
/

(
d

k

)
≥ 1

J + 1
.

Note that taking mD = k, which as we have seen corresponds to c = 2, we
have a trivial bound J + 1 ≥ 1 using Vandermonde’s convolution. Further-
more, the expression on the left-hand side in (A.5) is exactly the probability
P(X ≥ k −mD) = P(X ≥ kα) for α =

√
1− c/2, where the variable X follows

the hypergeometric distribution H(d, k, k/d). The rest of the proof is based on
applying Chernoff’s inequality and follows the scheme of the proof of Lemma 4.10
in Massart (2007).
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