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1. Deviation bounds.

1.1. Markov and generalization.

Theorem 1.1 (Markov’s inequality). Let X be a real-valued, nonnegative random variable such
that E[X] < +∞. We have, for all t > 0

P(X > t) ≤ E[X]

t
.

Proof. We decompose X in the following way

X = X1{X ≤ t}+X1{X > t} .

As a consequence,
X ≥ X1{X > t} ≥ t1{X > t} .

Taking expectation yields E[X] ≥ tP(X > t), and the result.

This inequality can seem almost trivial in itself. In layman’s term it means that in a population,
not more than half (or a third, or a fourth) of the individuals can have a wealth superior to twice (or
three, or four times) the mean wealth, otherwise these individuals together would be worth more than
the overall population. It is however a very powerful tool because of the following direct consequence.

Theorem 1.2. Let X be a real-valued random variable, and f : R → R+ increasing such that
E[f(X)] < +∞. We have, for all t ≥ 0

P(X > t) ≤ E[f(X)]

f(t)
.

Proof. As f is increasing, we have P(X > t) = P(f(X) > f(t)). The result is a direct conse-
quence of Markov’s inequality, taking X ′ = f(X) and t′ = f(t).

By judicious choices of f , this inequality can be applied to obtain numerous inequalities.

Example 1.1 (Chebyshev’s inequality). Let X be a real-valued random variable, such that
E[X2] < +∞. We have, for all t ≥ 0

P(|X − E[X]| > t) ≤ Var[X]

t2
.

Example 1.2 (Chernoff bounds). Let X be a real-valued random variable, such that E[eλX ] <
+∞ for all λ ≥ 0. We have, for all t ≥ 0

P(X > t) ≤ e−λt E[eλX ] .

Clearly, the more quickly f grows, the more powerful these inequalities are for large values of t.
Ideally, we want a function that is as “explosive” as possible. For λ > 0, f : x 7→ eλx is a good
example, for variables whose moment generating function E[eλX ] is well-defined.

Consider the case of X ∼ N (0, σ2). Its moment-generating function is e
λ2σ2

2 , and the Chernoff
bound yields the following, for all λ ≥ 0.

P(X > t) ≤ e−λt E[eλX ] ≤ e−λt+
λ2σ2

2 .
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Taking λ = t/σ2 to minimize the term in the exponential yields

P(X > t) ≤ e−
t2

2σ2 .

This inequality can be directly recovered by using the explicit form of the Gaussian distribution,
but by proving it this way, we see that it can be extended to any random variable that has a
moment-generating function smaller than one of some Gaussian.

1.2. Class of sub-Gaussian random variables.

Definition 1.1 (sub-Gaussian). A real-valued random variable X is said to be sub-Gaussian
with parameter σ2 > 0, denoted X ∈ sG(σ2), if for all λ ∈ R it holds that

E[eλX ] ≤ e
λ2σ2

2 .

In simpler term, the class sG(σ2) is the set of random variables whose moment-generating function
is less than the moment-generating function of a variable with distribution N (0, σ2). This simple
bound yields directly several properties for sub-Gaussian random variables.

1.2.1. Basic properties.

Proposition 1.1. For all X ∈ sG(σ2), we have E[X] = 0 and Var(X) = E[X2] ≤ σ2.

Proof. We decompose e
λ2σ2

2 and E[eλX ] in power series in λ

e
λ2σ2

2 =
∑
k≥0

(σ2λ2

2

)k 1

k!

E[eλX ] =
∑
k≥0

λkE[Xk]

k!
,

by Fubini. By putting all terms of order greater than 2 on the right hand side of the inequality

E[eλX ] ≤ e
λ2σ2

2 , we have for all λ ∈ R

1 + λE[X] +
λ2

2
E[X2] ≤ 1 +

λ2

2
σ2 + o(λ2) .

By subtracting 1 on both sides, dividing by λ > 0 and letting λ→ 0+ we obtain E[X] ≤ 0. By doing
the same thing for λ < 0 and λ → 0−, we obtain E[X] ≥ 0, so E[X] = 0. As a consequence, by
subtracting by 1, dividing by λ2/2 and letting λ go to 0, we have E[X2] ≤ σ2.

This class of random variables is of course not empty: for X ∼ N (0, σ2), X ∈ sG(σ2) more or less
by definition. Here are a few other useful examples.

Example 1.3.

- Let X take value −1 and 1 with probability 1/2, often called a Rademacher random variable.

E[eλX ] ≤ e−λ + eλ

2
= cosh(λ) ≤

(Taylor series)
e
λ2

2 .

As such, X ∈ sG(1).
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- For a > 0, let X be uniform over [−a, a].

E[eλX ] ≤
∫ a

−a
eλx

dx

2a
=
e−λa − eλa

2λa
≤ sinh(λa)

λa
≤

(Taylor series)
e
λ2a2

2 .

By definition, X ∈ sG(a2)

- For any random variable B be a taking values in [a, b], B−E[B] ∈ sG((b−a)2/4) (see exercise).

1.2.2. Chernoff and Hoeffding-type bounds. These random variables have been introduced in order
to obtain deviation bounds similar to those of Gaussian random variables. We will mimic the proof
above to obtain, via a Chernoff bound the following inequality.

Theorem 1.3 (Hoeffding-type bound). For any variable X ∈ sG(σ2), it holds for all t ≥ 0 that

P(X > t) ≤ e−
t2

2σ2 .

Proof.

P(X > t) ≤ e−λt E[eλX ] ≤ e−λt+
λ2σ2

2 .

Taking λ = t/σ2 to minimize the term in the exponential yields

P(X > t) ≤ e−
t2

2σ2 .

This bound is particularly useful when considering sums of independent sub-Gaussian random
variables. Recall that for independent Gaussian variables X1, . . . , Xn ∼ N (0, σ2)

n∑
i=1

aiXi ∼ N (0, σ2|a|22) .

More generally, Gaussian vectors are characterised by their projections a>X, which are also Gaussian.
In a similar manner, we can define sub-Gaussian vectors

Definition 1.2 (sub-Gaussian vectors). A random variable X taking values in Rd is said to be
a sub-Gaussian vector with parameter σ2, denoted X ∈ sGd(σ

2), if u>X ∈ sG(σ2) for all u ∈ Sd−1.

Theorem 1.4. For independent r.v. X1, . . . , Xn such that Xi ∈ sG(σ2), we have X ∈ sGn(σ2).

Proof.

E[eλu
>X ] = E

[
exp

(
λ

n∑
i=1

uiXi

)]
=

n∏
i=1

E[eλuiXi ]

≤
n∏
i=1

eλu
2
i σ

2/2 ≤ exp
(λ2σ2

2
|u|22
)
.

This result is very useful to deal with sums of independent sub-Gaussian random variables.
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Corollary 1.1. For independent r.v. X1, . . . , Xn such that Xi ∈ sG(σ2), we have a>X ∈
sG(|a|22σ2), and as a consequence

P
( n∑
i=1

aiXi > t
)
≤ e

− t2

2σ2|a|22 .

As an example, if the variables Xi−E[Xi] are independent and in sG(σ2), noting X̄ = 1
n

∑n
i=1Xi,

it holds that

P(X̄ − E[X̄] > t) ≤ e−
nt2

2σ2 .

Remark. All bounds have been written in the form P(X > t) ≤ ε(t). For X ∈ sG(σ2), −X is
also in sG(σ2), we can equivalently write P(X < −t) ≤ ε(t) and, from a union bound obtain that
P(|X| > t) ≤ 2ε(t). Moreover, these inequalities can be equivalently rewritten in the inverse form
X ≤ r(δ), with probability 1− δ, for any function r such that ε(r(δ)) ≤ δ.

For the variables Xi above, by the result of Corrolary 1.1, the deviation bound can be equivalently
rewritten as

X̄ ≤ E[X̄] + σ

√
2 log(1/δ)

n
.

Note that this bound does not depend on the variances of these variables. For bounded i.i.d. variables
in [−1, 1] with variance v � 1, it can seem suboptimal, with deviations around the mean of order√

1/n. However, the central limit theorem tells us that in the limit
√
n(X̄ − E[X̄])→ N (0, v), and

that we should therefore expect deviations of order
√
v/n. We will see that this is not possible in

general (see exercise), but that weaker versions of such an inequality exist, by studying the moments
of sub-Gaussian random variables.

1.2.3. Bernstein-type bound.

Theorem 1.5. Let X be in sG(σ2). For all integers k ≥ 1 it holds that

E[|X|k] ≤ 2(
√

2σ)k Γ
(k

2
+ 1
)
,

where the Gamma function is defined as Γ(x) =
∫ +∞

0
ux−1e−udu.

Proof. For X ∈ sG(σ2), let Y = X√
2σ

. By defintion, Y ∈ sG(1/2) and

E[|X|k] = (
√

2σ)kE[|Y |k] .

We derive a bound for this last term, by using the fact that

|Y |k =

∫ |Y |k
0

dt =

∫ +∞

0

1{|Y |k > t}dt =

∫ +∞

0

1{|Y | > t1/k}dt .

Taking expectations on both sides and applying Fubini yields

E[|Y |k] =

∫ +∞

0

P(|Y | > t1/k)dt ≤ 2

∫ +∞

0

e−t
2
k dt

≤ k

∫ +∞

0

u
k
2
−1e−udu = k Γ

(k
2

)
= 2 Γ

(k
2

+ 1
)
.
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This can also be used to define equivalently (up to constants) the class of sub-Gaussian random
variables (see exercise). Some other moment conditions will give different bounds, as in the following
theorem.

Definition 1.3. Let X be a real-valued random variable with E[X] = 0. We say that it satisfies
a Bernstein moment condition with parameters (v, b) if for all integers k ≥ 2

E[|X|k] ≤ 1

2
k! v bk−2 .

Theorem 1.6 (Bernstein’s inequality). For any random variable X that satisfies a Bernstein
moment condition with parameters (v, b), it holds for all t ≥ 0 that

P(X > t) ≤ exp
(
− t2

2v + 2bt

)
.

Proof. We derive a bound on the moment generating function of such a variable, based on the
moment condition. By the series expansion and Fubini, we have

E[eλX ] ≤ 1 +
λ2E[X2]

2
+
∑
k≥3

λkE[Xk]

k!

≤ 1 +
λ2v

2
+
λ2v

2

∑
k≥3

λk−2bk−2

≤ 1 +
λ2v/2

1− b|λ|
≤ e

λ2v/2
1−b|λ| for all λ < 1/b .

We apply a Chernoff bound to obtain a deviation bound

P(X > t) ≤ e−λtE[eλX ] ≤ e−λt+
λ2v/2
1−b|λ| .

Using λ = t
bt+v

< 1
b

yields the desired result.

Note that this moment condition is particularly interesting for bounded random variables. Indeed,
for all random variables such that |X| ≤ a for some a > 0 and E[X] = 0, one obtains directly for all
integers k ≥ 2

E[|X|k] ≤ E[X2ak−2] ≤ E[X2]ak−2 ≤ 1

2
k! E[X2]ak−2 .

From Bernstein’s inequality, we obtain for such variables the inequality

P(X > t) ≤ exp
(
− t2

2E[X2] + 2at

)
.

For small values of t, this is strictly better than a Hoeffding type inequality in e−
t2

2σ2 , as E[X2] ≤ σ2.
For a fixed sub-Gaussian constant, the variance of a random variable can be arbitrarily small (see
exercise). On the other hand, for large values of t, the tail is of order e−

t
2a , which is not as good.

This is a necessary sacrifice: as mentioned above, for a sub-Gaussian variable with variance v, it is

not possible to bound the tail by an expression of order e−
t2

2v (see exercise).
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1.3. Class of sub-exponential random variables. We introduced the class of sub-Gaussian random
variables as morally those who have a tail of order e−t

2
. Similarly, we can consider those who have,

as in the previous inequality, a tail of order e−t.

Definition 1.4 (sub-exponential random variables). A real-valued random variable X is said to
be sub-exponential with parameters ν2 > 0 and a > 0, denoted X ∈ sE(ν2, a), if it holds that

E[eλX ] ≤ e
λ2ν2

2 for all |λ| < 1

a
.

These classes are obviously not empty, as for all a > 0, sG(σ2) ⊂ sE(σ2, a). They are different
though: consider X with Laplace distribution with parameter 1, such that P(|X| > t) = e−t. It is
clearly not sub-Gaussian for any parameter σ2 > 0. However, its moment generating function can be
easily derived

E[eλX ] =
1

1− λ2
for all |λ| < 1.

Observe that this yields

E[eλX ] ≤ e2λ2 for all |λ| < 1

2
,

so X ∈ sE(2, 2). It is straightforward that for all t > 0, X ∈ sE(ν2, a) implies tX ∈ sE(t2ν2, ta).

1.3.1. Basic properties. Here are some properties of these variables.

Proposition 1.2. For all X ∈ sE(ν2, a), we have E[X] = 0 and Var(X) = E[X2] ≤ ν2.

Proof. As in sub-Gaussian random variables, as only values of λ close to 0 are used.

Theorem 1.7. For independent random variables X1, . . . , Xn such that Xi ∈ sE(ν2
i , ai), we have

n∑
i=1

Xi ∈ sE
( n∑
i=1

ν2
i ,max

i
ai

)
.

Proof. We have

E[exp
(
λ

n∑
i=1

Xi

)
] ≤

n∏
i=1

E[eλXi ] ≤
n∏
i=1

e
λ2ν2i

2 for |λ| < 1/max
i
ai .

As a consequence, for i.i.d variables such that Xi −E[X] ∈ sE(ν2, a), applying the theorem above
yields that X̄ − E[X] ∈ sE(ν2/n, a/n).

1.3.2. Bounds. For sub-Gaussian variables, this type of result is used to derive a tail bound on
the empirical average. We can obtain similar results for sub-exponential random variables.

Theorem 1.8 (Sub-exponential deviation bounds). Let X ∼ sE(ν2, a). It holds for all t ≥ 0 that

P(X > t) ≤ exp
(
− t2

2ν2
∧ t

2a

)
.



9

Proof. We use a Chernoff bound

P(X > t) ≤ e−λtE[eλX ] ≤ e−λt+
λ2ν2

2 for 0 ≤ λ < 1/a

To optimize the term in the exponential, we can consider two cases: if t < ν2/a, we can pick the

global minimum λ? = t/ν2 < 1/a, and obtain the bound e−
t2

2ν2 . If t ≥ ν2/a, since the term in the
exponential is decreasing over [0, λ?), we can pick λ = 1/a and obtain the bound e−

t
2a .

As an example, for the i.i.d variables such that Xi −E[X] ∈ sE(1, 1) considered above, this yields
that

P(X̄ − E[X] > t) ≤ exp
(
− nt2

2ν2
∧ nt

2a

)
.

Inverting this inequality yields that with probability 1− δ

X̄ ≤ E[X] +

√
2ν2 log(1/δ)

n
+

2a log(1/δ)

n
.

Sub-exponential variables show up in high-dimensional statistic mainly as squares of sub-Gaussian
random variables, as shown in the following.

Theorem 1.9. For any variable X ∈ sG(σ2), X2 − E[X2] ∈ sE(128σ4, 8σ2)

Proof. We derive an upper bound on the moment generating function of X2 − E[X2], from
bounds on the moments of X.

E[eλ(X2−E[X2])] = 1 +
∑
k≥2

λkE[(X2 − E[X2])k]

k!

≤ 1 +
∑
k≥2

|λ|k2kE[|X|2k]
k!

≤ 1 +
∑
k≥2

|λ|k2k2(
√

2σ)2k

≤ 1 + 32λ2σ4
∑
k≥0

(4|λ|σ2)k

≤ 1 +
32λ2σ4

1− 4|λ|σ2
for |λ| < 1

4σ2

≤ 1 + 64λ2σ4 for |λ| < 1

8σ2

≤ e64λ2σ4

.

Note that the constants 128 and 8 have not been optimised, the scaling in σ4 and σ2 is the
important part.

1.4. Maximal inequalities. Often in statistical problems, we will be interested not only in con-
trolling some random variables, or their linear combinations, but in controlling their maximum over
some set.
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1.4.1. Maximum over a finite set.

Theorem 1.10. Let X1, . . . , XN be N random variables such that Xi ∈ sG(σ2).

E[ max
1≤i≤N

Xi] ≤ σ
√

2 log(N) and E[ max
1≤i≤N

|Xi|] ≤ σ
√

2 log(2N) .

Moreover, for all t > 0

P( max
1≤i≤N

Xi > t) > Ne−
t2

2σ2 and P( max
1≤i≤N

|Xi| > t) > 2Ne−
t2

2σ2

Note that the variables are not required to be independent.

Proof. To obtain the first inequality, we derive for any λ > 0,

E[ max
1≤i≤N

Xi] =
1

λ
E
[

log
(
eλmax1≤i≤N Xi

)]
=

1

λ
log E

[
max

1≤i≤N
eλXi

]
≤ 1

λ
log
[ N∑
i=1

E[eλXi ]
]

≤ 1

λ
log
[ N∑
i=1

e
λ2σ2

2

]
=

log(N)

λ
+
λσ2

2
.

Taking λ =
√

2 log(N)/σ2 yields the first inequality. The third inequality is a consequence of a union
bound on N events

P
(

max
1≤i≤N

Xi > t
)

= P
( ⋃

1≤i≤N

{Xi > t}
)
≤

N∑
i=1

P(Xi > t) ≤ Ne−
t2

2σ2 .

The two other inequalities are a direct consequence of the fact that

max
1≤i≤N

|Xi| = max
1≤i≤2N

Yi ,

where Yi = Xi and Yi+N = −Xi for 1 ≤ i ≤ N .

1.4.2. Maximum over a polytope. The results above only apply to a finite family of sub-Gaussian
random variables. There are several cases where this can be extended to an infinite family, by reduc-
tion to the finite case. We consider here the special case of variables indexed by a polytope.

A polytope P of Rd is the convex hull of a finite number of points, denoted by V(P ). We consider
here the family of θ>X for some sub-Gaussian random vector of Rd, for all θ ∈ P . The link with the
results above is made evident by the following lemma

Lemma 1.1. For a polytope P ⊂ Rd and any x ∈ Rd, it holds that

max
θ∈P

θ>x = max
v∈V(P )

v>x .
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Proof. Let v1, . . . , vN denote the elements of V(P ). For any θ ∈ P , there exists nonnegative reals
λ1, . . . , λN that sum to one such that θ = λ1v1 + . . . + λNvN . As a consequence, for all x ∈ Rd it
holds that

θ>x =
N∑
i=1

λiv
>
i x ≤

N∑
i=1

λi max
v∈V(P )

v>x ≤ max
v∈V(P )

v>x .

Taking maximum over θ ∈ P yields

max
θ∈P

θ>x ≤ max
v∈V(P )

v>x .

The reversed inequality is a direct consequence of V(P ) ⊂ P .

Combining the last two results, we obtain the following theorem.

Theorem 1.11. Let P be a polytope such that |V(P )| = N , and X ∈ Rd be a random vector
such that v>X ∈ sG(σ2) for all v ∈ V(P ). It holds that

E[max
θ∈P

θ>X] ≤ σ
√

2 log(N) and E[max
θ∈P
|θ>X|] ≤ σ

√
2 log(2N) .

Moreover, for all t > 0

P(max
θ∈P

θ>X) ≤ Ne−
t2

2σ2 and P(max
θ∈P
|θ>X| > t) ≤ 2Ne−

t2

2σ2

In particular, if X ∈ sGd(σ
2) and the polytope is a subset of the unit Euclidean ball (P ⊂ Bd2),

then ‖v‖2 ≤ 1 for all v ∈ V(P ) and the theorem applies.

1.4.3. Maximum over the Euclidean ball. In the previous section, we showed an example of an
infinite family of sub-Gaussian random variables for which we can control the maximum, since it
is the same as the maximum of a related finite family. However, for some set K that has infinitely
many extreme points, the same approach would not work. We can nevertheless create a finite family
whose maximum approximates the original maximum.

Definition 1.5. Let K ⊂ Rd and ε > 0. A set N is an ε-net of K with respect to a distance
d(·, ·) on Rd if N ⊂ K and for all z ∈ K, there exists x ∈ N such that d(x, z) ≤ ε

Lemma 1.2. Let K be a compact subset of Rd, and Nε be an ε-net of K for the Euclidean norm.
For all X ∈ Rd, it holds that

max
v∈K

v>X ≤ max
z∈Nε

z>X + εmax
r∈B2

r>X .

Proof. For all v ∈ K, there exists z ∈ Nε and r ∈ εB2 such that v = z + r. As a consequence, it
holds that

max
v∈K

v>X ≤ max
z∈Nε

z>X + max
r∈εB2

r>X

≤ max
z∈Nε

z>X + εmax
r∈B2

r>X
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We consider the case of the Euclidean unit ball in dimension d, denoted by Bd2 . For this set, the
lemma above yields that

max
v∈Bd2

v>X ≤ max
z∈Nε

z>X + εmax
r∈B2

r>X .

As a consequence, for any ε-net Nε of Bd2 , it holds that

max
v∈Bd2

v>X ≤ 1

1− ε
max
z∈Nε

z>X .

For a finite ε-net, we therefore have a finite family whose maximum approximates the maximum over
Bd2 . In order to obtain a quantitative bound, we can study the cardinality of such a set.

Lemma 1.3. For all ε ∈ (0, 1), there exists an ε-net Nε of Bd2 such that |Nε| ≤ (3/ε)d.

Proof. We build the set in an inductive manner: let x1 = 0. For all i ≥ 2, we take xi to be any
x ∈ Bd2 such that |xi − xj| > ε for all j < i. If the process stops, the xi form an ε-net, by definition.

At any step N , consider the balls centred at xi, with radius ε
2
, denoted by xi +

ε
2
Bd2 . By triangular

inequality, we obtain that these balls are disjoint, and that they are all subsets of
(
1 + ε

2

)
Bd2 . Taking

volumes, we therefore have that

N∑
i=1

vol
(
xi +

ε

2
Bd2
)

= vol
( N⋃
i=1

xi +
ε

2
Bd2
)
≤ vol

((
1 +

ε

2

)
Bd2
)
.

As a consequence,

N
(ε

2

)d
≤
(

1 +
ε

2

)d
,

so N ≤ (1 + 2/ε)d ≤ (3/ε)d. Therefore, the processes stops and provides an ε-net with cardinality
less than (3/ε)d.

Combining these results, we obtain the following

Theorem 1.12. Let X be a random vector of Rd such that X ∈ sGd(σ
2). It holds that

E[max
θ∈B2

θ>X] ≤ 4σ
√
d

Moreover, for any δ > 0, it holds with probability 1− δ that

max
θ∈B2

θ>X ≤ 4σ
√
d+ 2σ

√
2 log(1/δ)

Proof. Let N1/2 be a 1/2-net of Bd2 such that |N1/2| ≤ 6d. As noted above, it holds that

max
θ∈B2

θ>X ≤ 2 max
z∈N1/2

z>X .

As a consequence, we have that

E[max
θ∈B2

θ>X] ≤ 2E[ max
z∈N1/2

z>X] ≤ 2σ
√

2 log(6d) ≤ 4σ
√
d .

Moreover, for all t > 0, it holds that

P(max
θ∈B2

θ>X > t) ≤ 6de−
t2

2σ2 .

Taking t = 4σ
√
d+ 2σ

√
2 log(1/δ) yields the desired result.

For a more in-depth survey of this subject, we refer to the very exhaustive (Boucheron et al., 2013).
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2. Estimation and detection in high-dimension. One of the important subjects in modern
statistical theory is the study of problems where the dimension of the observation or parameter space
d is much larger than the number of samples n. If we make no further assumptions, the following
example shows that this setting can be very problematic.

Example 2.1. Let θ ∈ Rd, and yi = θ∗+zi, for 1 ≤ i ≤ n, where the zi ∈ sGd(σ
2) are independent.

To estimate the parameter θ∗, we consider the empirical mean of the yi: θ̂ =
∑n

i=1 yi/n. Note that
this estimator can be interpreted as the empirical risk minimizer for the `2 loss, or equivalently the
maximum likelihood estimator for Gaussian noise

θ̂ ∈ argmin
θ∈Rd

n∑
i=1

‖θ − yi‖2
2 .

In this case, it is easy to analyse the performance of this estimator, as we have a closed form expression
for it

θ̂ = θ∗ +
1

n

n∑
i=1

zi .

In the case where zi ∼ N (0, σ2Id), we therefore have E[|θ̂ − θ∗|2] = σ2 d
n
. In the more general case,

by Theorem 1.12, it holds with probability 1− δ that

‖θ̂ − θ∗‖2 ≤ 4σ

√
d

n
+ 2σ

√
2 log(1/δ)

n
.

In a setting where d � n, the error bound is arbitrarily bad. Moreover, as will be shown later in
the course, any estimator will suffer a loss of this order, it is not specific to that one. In order to
overcome this curse of dimensionality, we can focus on problems where some information about the
parameter θ∗ is available.

2.1. Constrained estimation. We consider estimation problems of the type described above, with
the additional constraint that θ∗ ∈ S, for some know set S ⊂ Rd. For simplicity, we will directly
consider averages of our observations and study cases with one observation, and z ∈ sGd(σ

2/n). We
take in all the following θ̂ ∈ argminθ∈S ‖y − θ‖2

2. As above, this coincides with the empirical risk
minimiser and the maximum likelihood estimator for Gaussian noise.

2.1.1. General bounds. The following proposition is purely deterministic, valid for any z ∈ Rd

Proposition 2.1. Let θ∗ ∈ S and y = θ∗ + z. For θ̂ as defined above, it holds that

‖θ̂ − θ∗‖2 ≤ 2 sup
u∈S−S

〈u, z〉

‖θ̂ − θ∗‖ ≤ 2 sup
u∈ S−S|S−S|

〈u, z〉 ,

where S − S = {s− s′ | s, s′ ∈ S}, and A/|A| = {a/|a| | a ∈ A}.

Proof. We use the definition of θ̂ as a risk minimiser, as θ∗ ∈ S

‖θ̂ − y‖2 ≤ ‖θ∗ − y‖2

‖(θ̂ − θ∗) + (θ∗ − y)‖2 ≤ ‖θ∗ − y‖2

‖θ̂ − θ∗‖2 ≤ 2〈θ̂ − θ∗, y − θ∗〉 .



14

Applying directly this inequality by replacing y − θ∗ by z and θ − θ∗ ∈ S − S by the worst case, we
obtain the first result. By dividing each side by ‖θ̂ − θ∗‖, we have

‖θ̂ − θ∗‖ ≤ 2
〈 θ̂ − θ∗

‖θ̂ − θ∗‖
, y − θ∗

〉
.

Again, replacing θ̂−θ∗
‖θ̂−θ∗‖ ∈

S−S
|S−S| by the worst case, we obtain the desired inequality.

2.1.2. Examples. The maximal deviation inequalities derived in the previous section can be ap-
plied to obtain estimation bounds over a variety of constraints sets. We will see that the choice of
inequality to apply depends on the set S considered (in particular whether it is unbounded or not).
In the following examples, we recall that z ∈ sGd(σ

2/n). Further note that the bounds below are only
derived in expectation, but can easily be extended to statements that hold with high probability.

Example 2.2 (No constraints). When S = Rd, note that the first bound of Proposition 2.1 is
unbounded, and does not give any information. On the other hand, noting that S − S = Rd and
S−S
|S−S| = Sd−1 ⊂ Bd2 , we have

E[‖θ̂ − θ∗‖] ≤ 2 E[ sup
u∈Bd2

〈u, z〉] ≤ 8σ

√
d

n
.

Example 2.3 (Euclidean ball). Fix S = RBd2 , for some radius R > 0. The second bound of the
Proposition 2.1 yields the same guarantees as above, i.e. it is indifferent to R. In order to leverage
this information, we use the first inequality, and obtain

E[‖θ̂ − θ∗‖2] ≤ 2 E[ sup
u∈2RBd2

〈u, z〉] ≤ 16σR

√
d

n
.

Example 2.4 (Linear subspace). Fix S = V , for some radius linear subspace V of Rd, with
dim(V ) = k ≥ 1. As in the example with all of Rd, the first bound is not useful. The second one
yields

E[‖θ̂ − θ∗‖] ≤ 2 E[ sup
u∈V ∩Bd2

〈u, z〉] ≤ 2 E[ sup
u∈Bk2

〈u,ΠV z〉] ≤ 8σ

√
k

n
,

where ΠV is the Euclidean projection on V , since ΠV z ∈ sGk(σ
2/n).

Example 2.5 (Sparse vectors). We take to be S to be the set of vectors θ∗ with at most k
nonzero coefficients. This is denoted ‖θ‖0 ≤ k. This is a generalisation of the linear subspace case:
the parameter θ∗ belongs to one of the k-dimensional subspaces generated by k elements of the
canonical basis, but it is not know which one. By taking this point of view, the first bound is clearly
not useful, and we use the second one

E[‖θ̂ − θ∗‖] ≤ 2 E[ sup
‖u‖0≤2k
‖u‖2≤1

〈u, z〉] ≤ 2 E[ max
|S|=2k

max
u∈BS2
〈u, z〉] ≤ 4σ

√
2 log(6k

(
d
k

)
)

n
≤ 4σ

√
2k log(6ed/k)

n
.

It is interesting to compare the rates for the last two problems: not knowing the location of the k
coefficients makes us use a union bound over 6k

(
d
k

)
events instead of 6k. This comes at a small price

in the final rate: the “effective dimension” is multiplied by a term of order log(d/k).
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2.1.3. Convex sets. The bounds above are very general, but better results can be obtained by
making further assumptions on the constraint set. In this subsection, we consider the case where
θ∗ ∈ C, where C is a convex set. Aside from the stronger bounds found in the following proposition,
it is also algorithmically efficient to project on convex sets.

Proposition 2.2. Let θ∗ ∈ C and y = θ∗ + z. For θ̂ as defined above, it holds that

‖θ̂ − θ∗‖2 ≤ sup
u∈C−C

〈u, z〉

‖θ̂ − θ∗‖ ≤ sup
u∈TC(θ∗)∩Bd2

〈u, z〉 .

We recall the definition, for convex sets, of the tangent and normal cones.

Definition 2.1. Let C be a convex set, and c ∈ C. The tangent cone to C at x is defined as

TC(x) = cone{y − x | y ∈ C} .

The normal cone to C at x is defined as

NC(x) = {h ∈ Rd | 〈h, y − x〉 ≤ 0 ∀ y ∈ C} .

Note that NC(x) = T ∗C (x).

Proof of Proposition 2.2. Note that θ̂ being the projection of y on C ensures the crucial
inequality 〈y − θ̂, θ∗ − θ̂〉 ≤ 0. Indeed, consider θt = θ̂ + t(θ∗ − θ̂), for t ∈ [0, 1] it holds that

‖θt − y‖2 = ‖θ̂ − y‖2 + 2t〈θ̂ − y, θ∗ − θ̂〉+ t2‖θ∗ − θ̂‖2 .

Using the fact that ‖θt−y‖2 ≥ ‖θ̂−y‖2, dividing by t > 0 and letting it go to 0 yields the inequality.
Taking y = θ∗ + z, we obtain

‖θ̂ − θ∗‖2 ≤ 〈θ̂ − θ∗, z〉 .

This yields the two desired inequalities, as in the proof of Proposition 2.1.

Note that the bounds in the examples of the previous subsection yields better bounds when S is
a convex set. As an example, we can obtain the following.

Example 2.6 (`1 ball). Let C = RBd1 . The first bound from the proposition above yields

‖θ̂ − θ∗‖2 ≤ sup
u∈2RBd1

〈u, z〉 ≤ 2R sup
u∈Bd1

〈u, z〉 ≤ 2σR

√
log(2d)

n
.

The last inequality is a result of the duality between `1 and `∞ norms.

In order to reveal a useful connection between sparsity and the `1 ball, we use the following lemma,
given without proof

Lemma 2.1. For a convex cone K, it holds that

sup
u∈K∩Bd2

〈u, z〉 = dist(z,K∗) .
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We study an example that highlights once more the links between the `1 norm and sparsity:

Example 2.7. Let θ∗ be a k-sparse vector (i.e. |θ∗|0 ≤ k), such that |θ∗|1 = 1. When the
sparsity k is unknown, the second constraint can be exploited, and we can consider the estimator
θ̂ ∈ argminθ∈Bd1 ‖y − θ‖

2
2. Unexpectedly, even though the value of k is not used in the construction

of the estimator, the error bounds will depend on k, in an adaptive manner. This is due to the local
geometry of this convex set: the bound depends on TBd1 (θ∗), and the geometry of this cone is depen-

dent on k. For simplicity, we consider here that z ∼ N (0, σ2Id/n).

Proof. We have, by the result of Proposition 2.2, that

‖θ̂ − θ∗‖ ≤ sup
u∈TBd1

(θ∗)∩Bd2

〈u, z〉 .

Furthermore, by Lemma 2.1, this yields

‖θ̂ − θ∗‖ ≤ dist
(
z,NBd1 (θ∗)

)
.

For θ∗ that is k-sparse, this cone can be explicitly described. First, note that

NBd1 (θ∗) = {p ∈ Rd : ∀ θ ∈ Bd1 , 〈p, θ − θ∗〉 ≤ 0} .

Let S be the support of size k of θ∗. For any i, j ∈ S, consider θ = θ∗ + tei − tej. For t > 0 small
enough, |θ|1 = |θ∗|1. As a consequence, for any p ∈ NBd1 (θ∗), we have

〈p, θ − θ∗〉 = 〈p, tei − tej〉 = pi − pj ≤ 0 .

By changing the roles of i and j, we obtain that pi = pj. For any i ∈ S and j ∈ Sc, let θ = θ∗−tei±tej.
For t > 0 small enough, |θ|1 = |θ∗|1, and we obtain

〈p, θ − θ∗〉 = 〈p,−tei ± tej〉 = −pi ± pj ≤ 0 .

Therefore, for any p ∈ NBd1 (θ∗), there exists λ ≥ 0 such that

pi = λ for i ∈ S
|pj| ≤ λ for i /∈ S .

This can be shown to be sufficient as well. As a consequence, we have that

‖θ̂ − θ∗‖2 ≤ dist
(
z,NBd1 (θ∗)

)2

= inf
u∈NBd1

(θ∗)
‖z − u‖2

2

= inf
λ≥0

|uj |≤λ,j∈Sc

∑
i∈S

(
zi − λsign(θ∗i )

)2
+
∑
j∈Sc

(zj − uj)2

= inf
λ≥0

∑
i∈S

(
zi − λsign(θ∗i )

)2
+
∑
j∈Sc

stλ(zj)
2 ,

where stλ is the soft-thresholding function such that

stλ(z) =


z − λ if z < −λ,
0 if |z| ≤ λ,

z + λ if z > λ.
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Therefore, taking expectations yields, for any λ ≥ 0

E[‖θ̂ − θ∗‖2] ≤ σ2 k

n
(1 + λ2) + E

[∑
j∈Sc

stλ(zj)
2
]

≤ σ2 k

n
(1 + λ2) + σ2d− k

n

2√
2π

1

λ
exp(−λ2/2) ,

Taking λ =
√

2 log(d/s) yields, after simplification

E[‖θ̂ − θ∗‖2] ≤ 2σ2k log(d/k)

n
+

5

4
σ2 k

n
.

2.2. Hypothesis testing. Testing an hypothesis is a central idea of the scientific method. Checking
wether an assumption is supported by the results of an experiment allows researchers to try new
ideas, to gain a better understanding of their area of study. Hypothesis testing problems are the
natural setting in statistical analysis in order to answer a yes-or-no question, by choosing the answer
that is more likely, given the data.

From a mathematical point of view, a simple hypothesis testing problem, the goal is to identify
the underlying distribution of a dataset. Given a random variable X ∈ X and two distributions P0

and P1 on X , we aim to distinguish the two hypotheses

H0 : X ∼ P0

H1 : X ∼ P1 .

A test is a measurable function of the data ψ : X 7→ {0, 1} that indicates wether the instance was
generated with distribution P0 or P1. We define the probability of error of a test as the maximum
of the probabilities of type I (mistakenly rejecting the null hypothesis) and type II error (mistakenly
accepting the null hypothesis), formally, we say that a test has a probability of error less than
δ ∈ (0, 1) if

P0(ψ(X) = 1) ∨P1(ψ(X) = 0) ≤ δ .

In the case of problems with composite hypotheses, of the type

H0 : X ∼ P0 , P0 ∈ P0

H1 : X ∼ P1 , P1 ∈ P1 ,

where P0 and P1 are disjoint sets of distributions, this would be replaced by

sup
P0∈P0

P0(ψ(X) = 1) ∨ sup
P1∈P1

P1(ψ(X) = 0) ≤ δ .

In particular, we will consider the case of detecting means of a certain type in a high-dimensional
sub-Gaussian vector. Let Z ∈ sGd(σ

2), and consider for some C ⊂ Rd such that 0 /∈ C.

H0 : X = Z

H1 : X = µ+ Z, µ ∈ C .
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2.2.1. Statistics for testing. We recall that any measurable function of the data is called a statistic.
The following proposition shows how judiciously chosen statistics can be helpful to design tests.

Proposition 2.3. Let ϕ : X → R such that there exists τ ∈ R for which

P0(ϕ(X) > τ) ≤ δ , for all P0 ∈ P0

P1(ϕ(X) ≤ τ) ≤ δ , for all P1 ∈ P1 .

The test ψ defined as
ψ(X) = 1{ϕ(X) > τ}

has a probability of error less than δ.

This is a direct consequence of the definitions above.

In the problem of distinguishing µ = 0 from µ ∈ C, one can consider, for some set E ⊂ Rd, the
statistic ϕ(X) = maxu∈E〈u,X〉, particularly useful whenever ϕ(µ) is constant for all µ ∈ S (e.g., for
C = Sd−1, E = Bd2).

Proposition 2.4. Whenever maxu∈E〈u, µ〉 = tC, for all µ ∈ C, if tC ≥ 2 maxu∈E〈u, Z〉 with
probability 1− δ, then the test ψ defined by

ψ(X) = 1
{

max
u∈E
〈u,X〉 > tC

2

}
has a probability of error less than δ.

We study in the following subsection some examples, for specific choices of C.

2.2.2. Examples. We will consider cases where

C = {µ1S , S ∈ S} ,

for µ > 0 and some class S of k-sets (subsets of {1, . . . , d} of size k). For more information on this
problem, see Addario-Berry et al. (2010).

Example 2.8. Let S be the class of all k-sets. We take E = {1S , S ∈ S}, which is a finite set
with cardinality |E| =

(
d
k

)
. Note that for all µ ∈ C, maxu∈E〈u, µ〉 = tC = µk, and that for all u ∈ E,

|u|22 = k. We derive a bound one of the quantities of importance in this problem

max
u∈E
〈u, Z〉 =

√
k max
u∈E/

√
k
〈u, Z〉

for which it holds that

P0( max
u∈E/

√
k
〈u, Z〉 > t) ≤

(
d

k

)
e−t

2/2 .

As a consequence, applying Proposition 2.4, it is possible to distinguish the two hypotheses with
probability of error less than δ whenever

µ ≥ 2
√

2 log(ed/k) + 2

√
2

k
log(1/δ) .

See exercises for more examples, related to graphs.
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3. Information-theoretic lower bounds. All of the results stated so far have been upper
bounds on the statistical risk (expected distance from the true signal, probability of error, etc) of
estimation or testing procedures. They have been positive results, stating what is possible to achieve
in a statistical problem. Some of the results indicate that these bounds should be dependent on some
parameters of the problem: the sample size n, the dimension d of the problem, etc. It is not clear
however if this is an artefact of our analysis, or if this is a consequence of some intrinsic difficulty of
the problem. In order to address these questions, we will study lower bounds on the statistical risk,
by showing that some problems are hard for all estimators. This is mostly based on an analysis of
distances between distributions, using tools and methods from information theory.

3.1. Bounds for hypothesis testing. A simple starting observation is that there is a one to one
correspondance between tests and events over the probability space: it is equivalent to define ψ or
A = ψ−1({1}) and Ac = ψ−1({0}). Furthermore, note that for an hypothesis testing problem over
P0 and P1, we have

P0(Ψ(X) = 1) ∨P1(Ψ(X) = 0) ≥ 1

2

(
P0(Ψ(X) = 1) + P1(Ψ(X) = 0)

)
≥ 1

2

(
1− (P1(Ψ(X) = 1)−P0(Ψ(X) = 1))

)
≥ 1− (P1(A)−P0(A))

2
.

This term is related to an upper bound for the probability of error, as

P0(Ψ(X) = 1) ∨P1(Ψ(X) = 0) ≤ P0(Ψ(X) = 1) + P1(Ψ(X) = 0) = 1− (P1(A)−P0(A)) .

Evidently, we wish for the event A to have very different probabilities under P0 and P1. The natural
question is: How different can it be? In order to answer these types of question, it is very natural to
introduce a new tool, the total variation distance, which can be defined by maximising the difference
P1(A)−P0(A).

3.1.1. Total variation distance. The natural one-to-one link between tests and events on the
sample space can be exploited to quantify the distance between two distributions.

Definition 3.1. For two distributions P and Q on a probability space (Ω,F), the total variation
distance dTV is defined as

dTV(P,Q) = sup
A∈F
|P(A)−Q(A)| .

As seen above, this definition relates distance between distributions and testing error. This is
described formally by the Neyman-Pearson lemma. To clarify the notations, we consider two distri-
butions P0 and P1 and a sigma finite measure ν such that P0 � ν and P1 � ν (e.g. take ν = P0+P1).
We can then take p0 and p1 to be the Randon-Nykodym derivatives of these probability measures
with respect to ν. For any function f , we therefore write∫

f =

∫
f(x)dν

Lemma 3.1 (Neyman-Pearson). Let P0 and P1 be two probability measures. Then for any test
ψ, it holds

P0(ψ = 1) + P1(ψ = 0) ≥
∫

min(p0, p1)
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Moreover, equality holds for the Likelihood Ratio test ψ? = 1{p1 ≥ p0}.

Proof. Observe first that

P0(ψ? = 1) + P1(ψ? = 0) =

∫
ψ∗=1

p0 +

∫
ψ∗=0

p1

=

∫
p1≥p0

p0 +

∫
p1<p0

p1

=

∫
p1≥p0

min(p0, p1) +

∫
p1<p0

min(p0, p1)

=

∫
min(p0, p1) .

Next for any test ψ, define its rejection region R = {ψ = 1}. Let R? = {p1 ≥ p0} denote the rejection
region of the likelihood ration test ψ?. It holds

P0(ψ = 1) + P1(ψ = 0) = 1 + P0(R)−P1(R)

= 1 +

∫
R

p0 − p1

= 1 +

∫
R∩R?

p0 − p1 +

∫
R∩(R?)c

p0 − p1

= 1−
∫
R∩R?

|p0 − p1|+
∫
R∩(R?)c

|p0 − p1|

= 1 +

∫
|p0 − p1|

[
1{R ∩ (R?)c} − 1{R ∩R?}

]
The above quantity is clearly minimized for R = R?.

We obtain the following property

Proposition 3.1. The following definitions are equivalent

dTV(P0,P1) = sup
R∈A
|P0(R)−P1(R)| (i)

= sup
A∈F

∣∣∣ ∫
R

p0 − p1

∣∣∣ (ii)

=
1

2

∫
|p0 − p1| (iii)

= 1−
∫

min(p0, p1) (iv)

= 1− inf
ψ

[
P0(ψ = 1) + P1(ψ = 0)

]
(v)

where the infimum above is taken over all tests.

Proof. Clearly (i) and two are equivalent (ii) and the Neyman-Pearson Lemma gives the same for
(iv) and (v). Moreover, by identifying a test ψ to its rejection region, we obtain equivalence between
(i) and (v). Therefore it remains only to show that (iii) is equal to any of the other expressions.
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Hereafter, we show that (iii) = (iv). To that end, observe that∫
|p0 − p1| =

∫
p1≥p0

p1 − p0 +

∫
p1<p0

p0 − p1

=

∫
p1≥p0

p1 +

∫
p1<p0

p0 −
∫

min(p0, p1)

= 1−
∫
p1<p0

p1 + 1−
∫
p1≥p0

p0 −
∫

min(p0, p1)

= 2− 2

∫
min(p0, p1)

These definitions are more intuitive if one keeps in mind the following picture, with densities p0

and p1 represented over R.

Figure 1. The three zones are such that I0+r0,1 = I1+r0,1 = 1, and r0,1 =
∫

min(p0, p1). The total variation distance
therefore satisfies dTV(P0,P1) = I0 = I1 = 1− r0,1.

3.1.2. Divergence between distributions. The total variation distance between two distributions
is often difficult to compute. Particularly, when the data is n samples of i.i.d. variables, i.e. when
P = Q⊗n for some distribution Q, there is no general way to relate dTV(Q⊗n0 ,Q⊗n1 ) to dTV(Q0,Q1).
This setting is very common in statistics, and other distances have been employed to address this
issue. When P1 � P0, the total variation distance can be expressed as

dTV(P1,P0) =
1

2
EP0

[∣∣∣d P1

d P0

− 1
∣∣∣] .

This a special case of an f -divergence (Csiszár, 1963), defined for any convex function on (0,+∞)
such that f(1) = 0 as

Df (P1,P0) = EP0

[
f
(d P1

d P0

)]
.

For the total variation distance, the choice of function is f(t) = |t− 1|/2.

Definition 3.2. For different choices of divergence function f , the following distances
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• The Hellinger distance H(P0,P1) coincides with the choice f(t) = (
√
t− 1)2

H(P1,P0) = EP0

[(√d P1

d P0

− 1
)2]

.

• The Kullback-Leibler divergence KL(P0,P1) coincides with the choice f(t) = t log(t)

KL(P1,P0) = EP0

[d P1

d P0

log
(d P1

d P0

)]
.

• The χ2 divergence χ2(P0,P1) coincides with the choice f(t) = (t− 1)2

χ2(P1,P0) = EP0

[(d P1

d P0

− 1
)2]

.

These divergences are always nonnegative, and equal to 0 if and only if P0 = P1 almost surely.
This property that they share with the total variation distance is directly true for the Hellinger and
χ2 divergence, as for any function f that is positive except in 1. We study first the Kullback-Leibler
divergence, its properties, and how it relates to the total variation distance

3.1.3. Kullback-Leibler divergence.

Definition 3.3. The Kullback-Leibler divergence between probability measures P1 and P0 is
equivalently given by

KL(P1,P0) =


∫

log
(dP1

dP0

)
dP1 , if P1 � P0

∞ , otherwise .

It can be shown Tsybakov (2009) that the integral is always well defined when P1 � P0 (though
it can be equal to +∞ even in this case). Unlike the total variation distance, the Kullback-Leibler
divergence is not a distance. Actually, it is not even symmetric. Nevertheless, it enjoys properties
that are very useful for our purposes.

Proposition 3.2. Let P and Q be two probability measures. Then

1. KL(P,Q) ≥ 0
2. If P and Q are product measures, i.e.,

P =
n⊗
i=1

Pi and Q =
n⊗
i=1

Qi

then

KL(P,Q) =
n∑
i=1

KL(Pi,Qi) .

Proof. If P is not absolutely continuous then the result is trivial. Next, assume that P� Q and
let X ∼ P.

1. Observe that by Jensen’s inequality,

KL(P,Q) = −E log
(dQ

dP
(X)

)
≥ − log E

(dQ

dP
(X)

)
= − log(1) = 0 .
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2. Note that if X = (X1, . . . , Xn),

KL(P,Q) = E log
(dP

dQ
(X)

)
=

n∑
i=1

∫
log
(dPi

dQi

(Xi)
)

dP1(X1) · · · dPn(Xn)

=
n∑
i=1

∫
log
(dPi

dQi

(Xi)
)

dPi(Xi)

=
n∑
i=1

KL(Pi,Qi)

Point 2. in Proposition 3.2 is particularly useful in statistics where observations typically consist
of n independent random variables.

Example 3.1. For any θ ∈ Rd, let Pθ denote the distribution of Y ∼ N (θ, σ2Id). Then

KL(Pθ,Pθ′) =
d∑
i=1

(θi − θ′i)2

2σ2
=
|θ − θ′|22

2σ2
.

Proof. We have that

dPθ

dPθ′
(X) = exp

(
− 1

2σ2
|X − θ|22 +

1

2σ2
|X − θ′|22

)
= exp

(
− 1

2σ2

(
|θ|22 − |θ′|22 − 2〈X, θ − θ′〉

))
By definition of the divergence, we obtain that

KL(Pθ,Pθ′) = Eθ

[
− 1

2σ2

(
|θ|22 − |θ′|22 − 2〈X, θ − θ′〉

)]
= − 1

2σ2

(
− |θ|22 − |θ′|22 + 2〈θ, θ′〉

)
,

hence the desired result.

The Kullback-Leibler divergence is easier to manipulate than the total variation distance but only
the latter is related to the minimax probability of error. Fortunately, these two quantities can be
compared using Pinsker’s inequality. We prove here a slightly weaker version of Pinsker’s inequality
that will be sufficient for our purpose. For a stronger statement, see Tsybakov (2009), Lemma 2.5.

Lemma 3.2 (Pinsker’s inequality.). Let Q and Q be two probability measures such that P� Q.
Then

dTV(P,Q) ≤
√
KL(P,Q) .
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Proof. Note that

KL(P,Q) =

∫
pq>0

p log
(p
q

)
= −2

∫
pq>0

p log
(√q

p

)
= −2

∫
pq>0

p log
([√q

p
− 1
]

+ 1
)

≥ −2

∫
pq>0

p
[√q

p
− 1
]

(by Jensen)

= 2− 2

∫
√
pq

Next, note that (∫ √
pq
)2

=
(∫ √

max(p, q) min(p, q)
)2

≤
∫

max(p, q)

∫
min(p, q) (by Cauchy-Schwarz)

=
[
2−

∫
min(p, q)

] ∫
min(p, q)

=
(
1 + dTV(P,Q)

)(
1− dTV(P,Q)

)
= 1− dTV(P,Q)2

The two displays yield

KL(P,Q) ≥ 2− 2
√

1− dTV(P,Q)2 ≥ dTV(P,Q)2 ,

where we used the fact that 0 ≤ dTV(P,Q) ≤ 1 and
√

1− x ≤ 1− x/2 for x ∈ [0, 1].

More information on the subjects of information theory and distances, divergences between distri-
butions can be found in Tsybakov (2009); Csiszár and Körner (2011); Cover and Thomas (1991).

3.2. Bounds for estimation. The problem of estimating a parameter is intuitively harder than
deciding between two values for this parameter. This can be argued formally in the following way,
by reducing the problem of estimation to one of hypothesis testing: if there exists an estimator θ̂ of
some parameter θ such that |θ̂ − θ| ≤ r with probability 1− α, for some r > 0 and α ∈ (0, 1), then
it is possible to distinguish the hypotheses θ = θ0 and θ = θ1 whenever |θ1 − θ0| > 2r. If this has
already been proven to be impossible, we obtain a lower bound on the statistical performance of any
estimator for θ.

This simple argument can be made precise using the formalism of statistical hypothesis testing. To
do so, we reduce our estimation problem to a testing problem. The reduction consists of two steps.

1. Reduction to a finite number of hypotheses. In this step the goal is to find the largest
possible number of hypotheses θ1, . . . , θM ∈ Θ under the constraint that

(1) |θj − θk|22 ≥ 4φ(Θ) .

This problem boils down to a packing of the set Θ. We can use the following trivial observations:

inf
θ̂

sup
θ∈Θ

Pθ

[
|θ̂ − θ|22 > φ(Θ)

]
≥ inf

θ̂
max

1≤j≤M
Pθj

[
|θ̂ − θj|22 > φ(Θ)

]
.
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2. Reduction to a testing problem. In this second step, the necessity of the constraint (1)
becomes apparent.
For any estimator θ̂, define the minimum distance test ψ(θ̂) that is associated to it by

ψ(θ̂) = argmin
1≤j≤M

|θ̂ − θj|2 ,

with ties broken arbitrarily.
Next observe that if, for some j = 1, . . . ,M , ψ(θ̂) 6= j, then there exists k 6= j such that
|θ̂ − θk|2 ≤ |θ̂ − θj|2. Together with the reverse triangle inequality it yields

|θ̂ − θj|2 ≥ |θj − θk|2 − |θ̂ − θk|2 ≥ |θj − θk|2 − |θ̂ − θj|2
so that

|θ̂ − θj|2 ≥
1

2
|θj − θk|2

Together with constraint (1), it yields

|θ̂ − θj|22 ≥ φ(Θ)

As a result,

inf
θ̂

max
1≤j≤M

Pθj

[
|θ̂ − θj|22 > φ(Θ)

]
≥ inf

θ̂
max

1≤j≤M
Pθj

[
ψ(θ̂) 6= j

]
≥ inf

ψ
max

1≤j≤M
Pθj

[
ψ 6= j

]
where the infimum is taken over all tests based on Y and that take values in {1, . . . ,M}.

Conclusion: it is sufficient for proving lower bounds to find θ1, . . . , θM ∈ Θ such that |θj − θk|22 ≥
4φ(Θ) and

inf
ψ

max
1≤j≤M

Pθj

[
ψ 6= j

]
≥ C ′ .

The above quantity is called minimax probability of error. In the next sections, we show how it can
be bounded from below using arguments from information theory. For the purpose of illustration, we
begin with the simple case where M = 2 in the next section.

3.2.1. Fano’s lemma. The reduction to hypothesis testing from this section allows us to use more
than two hypotheses. Specifically, we should find θ1, . . . , θM such that

inf
ψ

max
1≤j≤M

Pθj

[
ψ 6= j

]
≥ C ′ ,

for some positive constant C ′. Unfortunately, the Neyman-Pearson Lemma no longer exists for more
than two hypotheses. Nevertheless, it is possible to relate the minimax probability of error directly
to the Kullback-Leibler divergence, without involving the total variation distance. This is possible
using a well known result from information theory called Fano’s inequality, that takes into account
information about many hypotheses. We use it in a form that is tailored to our purposes and that is
due to Lucien Birgé (Birgé, 1983) and builds upon an original result in (Ibragimov and Hasminskii,
1981).

Theorem 3.1 (Fano’s inequality). Let P1, . . . , PM ,M ≥ 2 be probability distributions such that
Pj � Pk, ∀ j, k. Then

inf
ψ

max
1≤j≤M

Pj
[
ψ(X) 6= j

]
≥ 1−

1
M2

∑M
j,k=1 KL(Pj, Pk) + log 2

log(M − 1)

where the infimum is taken over all tests with values in {1, . . . ,M}.
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Proof. Let Z ∈ {1, . . . ,M} be a random variable such that P(Z = i) = 1/M and let X ∼ PZ .
Note that PZ is a mixture distribution so that for any measure ν such that PZ � ν, we have

dPZ
dν

=
1

M

M∑
j=1

dPj
dν

.

For all test ψ, we have

M∑
j=1

P(Z = j|X) log[P(Z = j|X)] =

= P(Z = ψ(X)|X) log[P(Z = ψ(X)|X)] +
∑

j 6=ψ(X)

P(Z = j|X) log[P(Z = j|X)]

= (1−P(Z 6= ψ(X)|X)) log[1−P(Z 6= ψ(X)|X)]

+ P(Z 6= ψ(X)|X)
∑

j 6=ψ(X)

P(Z = j|X)

P(Z 6= ψ(X)|X)
log
[ P(Z = j|X)

P(Z 6= ψ(X)|X)

]
+ P(Z 6= ψ(X)|X) log[P(Z 6= ψ(X)|X)]

= h(P(Z 6= ψ(X)|X)) + P(Z 6= ψ(X)|X)
∑

j 6=ψ(X)

qj log(qj) ,

where
h(x) = x log(x) + (1− x) log(1− x)

and

qj =
P(Z = j|X)

P(Z 6= ψ(X)|X)

is such that qj ≥ 0 and
∑

j 6=ψ(X) qj = 1. It implies by Jensen’s inequality that

∑
j 6=ψ(X)

qj log(qj) = −
∑

j 6=ψ(X)

qj log
( 1

qj

)
≥ − log

( ∑
j 6=ψ(X)

qj
qj

)
= − log(M − 1) .

By the same convexity argument, we get h(x) ≥ − log 2. It yields

(2)
M∑
j=1

P(Z = j|X) log[P(Z = j|X)] ≥ − log 2−P(Z 6= ψ(X)|X) log(M − 1) .

Next, observe that since X ∼ PZ , the random variable P(Z = j|X) satisfies

P(Z = j|X) =
1

M

dPj
dPZ

(X) =
dPj(X)∑M
k=1 dPk(X)
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It implies ∫ { M∑
j=1

P(Z = j|X = x) log[P(Z = j|X = x)]
}

dPZ(x)

=
M∑
j=1

∫ { 1

M

dPj
dPZ

(x) log
( 1

M

dPj
dPZ

(x)
)}

dPZ(x)

=
1

M

M∑
j=1

∫
log
( dPj(x)∑M

k=1 dPk(x)

)
dPj(x)

≤ 1

M2

M∑
j,k=1

∫
log
(dPj(x)

dPk(x)

)
dPj(x)− logM (by Jensen)

=
1

M2

M∑
j,k=1

KL(Pj, Pk)− logM ,

Together with (2), it yields

1

M2

M∑
j,k=1

KL(Pj, Pk)− logM ≥ − log 2−P(Z 6= ψ(X)) log(M − 1)

Since

P(Z 6= ψ(X)) =
1

M

M∑
j=1

Pj(ψ(X) 6= j) ≤ max
1≤j≤M

Pj(ψ(X) 6= j) ,

this implies the desired result.

Fano’s inequality leads to the following useful theorem.

Theorem 3.2. Assume that Θ contains M ≥ 5 hypotheses θ1, . . . , θM such that for some constant
0 < α < 1/4, it holds

(i) |θj − θk|22 ≥ 4φ

(ii) |θj − θk|22 ≤
2ασ2

n
log(M)

Then

inf
θ̂

sup
θ∈Θ

Pθ

(
|θ̂ − θ|22 ≥ φ

)
≥ 1

2
− 2α .

Proof. in view of (i), it follows from the reduction to hypothesis testing that it is sufficient to
prove that

inf
ψ

max
1≤j≤M

Pθj

[
ψ 6= j

]
≥ 1

2
− 2α

If follows from (ii) and Example 3.1 that

KL(Pj,Pk) =
n|θj − θk|22

2σ2
≤ α log(M) .

Moreover, since M ≥ 5,
1
M2

∑M
j,k=1 KL(Pj,Pk) + log 2

log(M − 1)
≤ α log(M) + log 2

log(M − 1)
≤ 2α +

1

2
.

The proof then follows from Fano’s inequality.
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3.2.2. Packing techniques. Theorem 3.2 indicates that we must take φ ≤ ασ2

2n
log(M). Therefore,

the larger the M , the larger the lower bound can be. However, M cannot be arbitrary larger because
of the constraint (i). We are therefore facing a packing problem where the goal is to “pack” as many
Euclidean balls of radius proportional to σ

√
log(M)/n in Θ under the constraint that their centers

remain close together (constraint (ii)). If Θ = Rd, this the goal is to pack the Euclidean ball of
radius R = σ

√
2α log(M)/n with Euclidean balls of radius R

√
2α/γ. This can be done using the

lemma below. It gives a a lower bound on the size of a packing of the discrete hypercube {0, 1}d with
respect to the Hamming distance defined by

ρ(ω, ω′) =
d∑
i=1

1(ωi 6= ω′j) , ∀ω, ω′ ∈ {0, 1}d

Lemma 3.3 (Varshamov-Gilbert). For any γ ∈ (0, 1/2), there exist binary vectors ω1, . . . ωM ∈
{0, 1}d such that

(i) ρ(ωj, ωk) ≥
(1

2
− γ
)
d for all j 6= k ,

(ii) M = beγ2dc ≥ e
γ2d
2 .

Proof. Let ωj,i, 1 ≤ i ≤ d, 1 ≤ j ≤M to be i.i.d Bernoulli random variables with parameter 1/2
and observe that

d− ρ(ωj, ωk) = X ∼ Bin(d, 1/2) .

Therefore it follows from a union bound that

P
[
∃j 6= k , ρ(ωj, ωk) <

(1

2
− γ
)
d
]
≤ M(M − 1)

2
P
(
X − d

2
> γd

)
.

Hoeffding’s inequality then yields

M(M − 1)

2
P
(
X − d

2
> γd

)
≤ exp

(
− 2γ2d+ log

(M(M − 1)

2

))
< 1

as soon as
M(M − 1) < 2 exp

(
2γ2d

)
A sufficient condition for the above inequality to hold is to take M = beγ2dc ≥ e

γ2d
2 . For this value

of M , we have

P
(
∀j 6= k , ρ(ωj, ωk) ≥

(1

2
− γ
)
d
)
> 0

and by virtue of the probabilistic method, there exist ω1, . . . ωM ∈ {0, 1}d that satisfy (i) and (ii)

We are now in a position to apply Theorem 3.2 by choosing θ1, . . . , θM based on ω1, . . . , ωM from
the Varshamov-Gilbert Lemma.

3.2.3. Lower bounds for estimation. Take γ = 1/4 and apply the Varshamov-Gilbert Lemma
to obtain ω1, . . . , ωM with M = bed/16c ≥ ed/32 and such that ρ(ωj, ωk) ≥ d/4 for all j 6= k. Let
θ1, . . . , θM be such that

θj = ωj
βσ√
n
,

for some β > 0 to be chosen later. We can check the conditions of Theorem 3.2:
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(i) |θj − θk|22 =
β2σ2

n
ρ(ωj, ωk) ≥ 4

β2σ2d

16n

(ii) |θj − θk|22 =
β2σ2

n
ρ(ωj, ωk) ≤

β2σ2d

n
≤ 32β2σ2

n
log(M) =

2ασ2

n
log(M) ,

for β =
√
α

4
. Applying now Theorem 3.2 yields

inf
θ̂

sup
θ∈Rd

Pθ

(
|θ̂ − θ|22 ≥

α

256

σ2d

n

)
≥ 1

2
− 2α .

It implies the following corollary.

Corollary 3.1. The minimax rate of estimation of estimating a vector of Rd with sub-Gaussian
noise zi ∈ sGd(σ

2) is φ(Rd) = σ2d/n. Moreover, it is attained by the least squares estimator.

As seen in the previous section, when the mean vector has sparsity k, we have to pay for an extra
logarithmic term log(ed/k) for not knowing the sparsity pattern of the unknown θ∗ (when compared
to having θ∗ belonging to a known k-dimensional space). In this section, we show that this term is
unavoidable as it appears in the minimax optimal rate of estimation of sparse vectors.

Note that the vectors θ1, . . . , θM employed in the previous subsection are not guaranteed to be
sparse because the vectors ω1, . . . , ωM obtained from the Varshamov-Gilbert Lemma may themselves
not be sparse. To overcome this limitation, we need a sparse version of the Varhsamov-Gilbert lemma
(see examples sheet 2).

Lemma 3.4 (Sparse Varshamov-Gilbert). There exist positive constants C1 and C2 such that the
following holds for any two integers k and d such that 1 ≤ k ≤ d/8. There exist binary vectors
ω1, . . . ωM ∈ {0, 1}d such that

(i) ρ(ωi, ωj) ≥
k

2
for all i 6= j ,

(ii) log(M) ≥ k

8
log(1 +

d

2k
) .

(iii) |ωj|0 = k for all j .

Apply the sparse Varshamov-Gilbert lemma to obtain ω1, . . . , ωM with log(M) ≥ k
8

log(1+ d
2k

) and
such that ρ(ωj, ωk) ≥ k/2 for all j 6= k. Let θ1, . . . , θM be such that

θj = ωj
βσ√
n

√
log(1 +

d

2k
) ,

for some β > 0 to be chosen later. We can check the conditions of Theorem 3.2:

(i) |θj − θk|22 =
β2σ2

n
ρ(ωj, ωk) log(1 +

d

2k
) ≥ 4

β2σ2

8n
k log(1 +

d

2k
)

(ii) |θj − θk|22 =
β2σ2

n
ρ(ωj, ωk) log(1 +

d

2k
) ≤ 2kβ2σ2

n
log(1 +

d

2k
) ≤ 2ασ2

n
log(M) ,

for β =
√

α
8
. Applying now Theorem 3.2 yields

inf
θ̂

sup
θ∈Rd

|θ|0≤k

Pθ

(
|θ̂ − θ|22 ≥

α2σ2

64n
k log(1 +

d

2k
)
)
≥ 1

2
− 2α .

It implies the following corollary.
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Corollary 3.2. Recall that B0(k) ⊂ Rd denotes the set of all k-sparse vectors of Rd. The
minimax rate of estimation of estimating a k-sparse vector of Rd with sub-Gaussian noise zi ∈ sGd(σ

2)
is φ(B0(k)) = σ2k

n
log(ed/k). Moreover, it is attained by the constrained least squares estimator.

3.3. Techniques for detection. To derive lower bounds for hypothesis testing problems with mul-
tiple hypotheses, Fano’s inequality (Theorem 3.1) is very useful. This is in particularly relevant when
one wishes to reduce an estimation problem to a testing problem of this type. To apply this inequal-
ity, we need to derive the pairwise Kullback–Leibler divergences between the distributions in the
hypotheses.

Another divergence mentioned in Definition 3.2 is the χ2 divergence, defined when P1 � P0 by

χ2(P1,P0) = E
[(dP1

dP0

− 1
)2]

.

This divergence has several very convenient properties. It is nonnegative, and it can be compared to
the total variation distance, through a more straightforward inequality than in Pinsker’s inequality
(Lemma 3.2).

Lemma 3.5. For any distributions P0,P1 such that P1 � P0, we have

dTV(P1,P0) ≤ 1

2

√
χ2(P1,P0) .

Proof. We apply the Cauchy–Schartwz inequality to a definition of the total variation distance

dTV(P1,P0) =
1

2
E
[∣∣∣dP1

dP0

− 1
∣∣∣] ≤ 1

2

√
E
[(dP1

dP0

− 1
)2]

=
1

2

√
χ2(P1,P0) .

As for other divergences, this allows us to obtain an explicit bound on the total variation distance,
whenever it is possible to compute it. As for the Kullback–Leibler divergence, this is often possible
in practice, largely due to the following properties.

Proposition 3.3. Let P and Q be the distributions of n independent samples, i.e. P = ⊗ni=1Pi

and Q = ⊗ni=1Qi, with Pi � Qi. We have that

χ2(P,Q) =
n∏
i=1

(
1 + χ2(Pi,Qi)

)
− 1 .

Proof. We compute the divergence, using independence of the samples.

χ2(P,Q) = E
[(dP

dQ
− 1
)2]

= E
[(dP

dQ

)2]
− 1

= E
[ n∏
i=1

(dPi

dQi

)2]
− 1

=
n∏
i=1

E
[(dPi

dQi

)2]
− 1

=
n∏
i=1

(
1 + χ2(Pi,Qi)

)
− 1
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Proposition 3.4. Let P0 and P1 be distributions, where P1 is a finite uniform mixture of Pθ

for θ ∈ C such that P1 = 1/|C|
∑

θ∈C Pθ, where Pθ � P0 for all θ ∈ C. We have

χ2(P1,P0) =
1

|C|2
∑
θ,θ′∈C

E
[dPθ

dP0

dPθ′

dP0

]
− 1 .

Proof. The result follows directly using definitions of the divergence and of P1

χ2(P1,P0) = E
[(dP

dQ

)2]
− 1 = E

[( 1

|C|
∑
θ∈C

dPθ

dP0

)2]
− 1 =

1

|C|2
∑
θ,θ′∈C

E
[dPθ

dP0

dPθ′

dP0

]
− 1 .

This property is particularly useful to derive lower bounds for detection problems, when the alter-
native is composite. This folklore technique can be formally justified in the following lemma

Lemma 3.6. Let P0 be a distribution and D be a set of distributions. We have, for any finite
subset D′ ⊂ D, and any test ψ

P0(ψ = 1) ∨max
P∈D

P(ψ = 0) ≥ P0(ψ = 1) ∨max
P∈D′

P(ψ = 0) ≥ P0(ψ = 1) ∨ 1

|D|
∑
P∈D

P(ψ = 0)

Proof. The first inequality holds by taking a maximum over a smaller set. The second one holds
by upper bounding an average by the greatest term.

If we denote by P1 this finite mixture (that may not be in D), we obtain the following as a
consequence of Lemma 3.5

P0(ψ = 1) ∨ 1

|D|
∑
P∈D

P(ψ = 0) ≥ 1− dTV(P1,P0)

2
≥ 1

2
−
√
χ2(P1,P0)

4
.

Proposition 3.4 provides a recipe to compute the last term. To illustrate this, we consider the following
problem, mentioned in Section 2.2 and Example 2.2.2, of distinguishing two hypotheses for the
distribution of a high-dimensional vector X ∈ Rd

H0 : X = Z

H1 : X = µ+ Z, µ ∈ C .

Here, Z ∈ sGd(σ
2), and we take

C = {µ1S , S ∈ S} ,

for µ > 0 and some class S of k-sets (subsets of {1, . . . , d} of size k). For more information on this
problem, see Addario-Berry et al. (2010). We have derived some upper bounds for the probability of
error of some tests - i.e. statements of the form “for µ taking these values, the probability of error is
less than - in this problem in these sections and in Examples sheets. We focus now on lower bounds.
We start by applying Lemma 3.6 with the subset D′ of the set of distributions

D′ = {N (µ1S, Id) , S ∈ S} .
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We can obtain a lower bound by computing the χ2 divergence between P1, uniform mixture of the
N (µ1S, Id) over S, and P0. By Proposition 3.4, we have that

χ2(P1,P0) =
1

|S|2
∑
S,S′∈S

E
[dPS

dP0

dPS′

dP0

]
− 1 ,

with the notation that PS = N (µ1S, Id) and P0 = N (0, Id). Note that the likelihood ratio dPS/dP0(X)
in this expression can be directly computed, for X ∈ Rd and S ∈ S

dPS

dP0

(X) = exp
(
− µ2k

2
+XS

)
,

where XS = 〈1S, X〉, i.e. the sum of the coefficients of X in S. As a consequence, we have that

χ2(P1,P0) =
1

|S|2
∑
S,S′∈S

E
[dPS

dP0

dPS′

dP0

]
− 1

=
1

|S|2
∑
S,S′∈S

e−kµ
2

E0

[
eµ(XS+XS′ )

]
− 1

=
1

|S|2
∑
S,S′∈S

eµ
2|S∩S′| − 1

= EZ

[
eµ

2Z
]
− 1

where Z = |S ∩ S ′| when S, S ′ are chosen uniformly and independently in S, and where the penulti-
mate line is a direct computation based on the moment-generating function of a Gaussian variable.
In order to obtain an explicit bound on the divergence, we make can some assumptions on the nature
of C, as in the following result.

Proposition 3.5. Let C be such that

- Z conditional on S ′ has the same distribution for all S’.
- For a fixed S0 ∈ C, and i ∈ S0, P(i ∈ S) = k/d.

It holds that

E[eµ
2Z ] ≤ 1 +

k

d

(
ekµ

2 − 1
)
.

Proof. By the first assumption on C, we can take without loss of generality S ′ = {1, . . . , k} in
Z = |S ∩ S ′|. As a consequence, it holds by Holder’s inequality that

E[eµ
2Z ] = E

[ k∏
i=1

eµ
21{i∈S}

]
≤

k∏
i=1

(
E
[
ekµ

21{i∈S}]) 1
k

= E
[
ekµ

21{1∈S}] ,
and the second assumption gives the result.
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As a consequence of this proposition, under minimal assumptions on C, we have an upper bound
on the divergence between the two distributions. For a concrete example, for any ν ∈ (0, 1/2), let

µ ≤
√

1

k
log
(
16
ν2d

k
+ 1
)

Simple computations yield that

χ(P1,P0) ≤ k

d

(
ekµ

2 − 1
)
≤ 16ν2

As a consequence of Lemma 3.6, we have that

inf
ψ

P0(ψ = 1) ∨max
P∈D

P(ψ = 0) ≥ 1− dTV(P1,P0)

2
≥ 1

2
−
√
χ2(P1,P0)

4
≥ 1

2
− ν .

4. Linear Regression. In this section, we focus on the problem of linear regression where the
data consists of n observations (Xi, yi) where yi ∈ R is a response and where Xi ∈ Rd are covariates
or regressors, such that for some θ∗ ∈ Rd, we have yi = Xiθ

∗ + zi, or in matrix form

y = Xθ∗ + z

with y ∈ Rn, X ∈ Rn×d and z ∈ Rn is a noise vector, often assumed to be centred. The goal of this
problem is to estimate the explanatory vector θ∗ or the “true response” Xθ∗.

4.1. Parametric setting. In this section, we assume that the rank of X is d, which means that
d ≤ n. This is a low-dimensional, or parametric setting. The most popular method of estimation in
linear regression is the method of least-squares. It can be motivated by its equivalence with maximum
likelihood estimation when z is normally distributed. Before this connection was made by Gauss, this
method had already been used in astronomy as a way to find a linear model that best fits the data,
for which there is an closed-form algebraic expression. Formally, we consider the function ` : Rd → R
defined by

`(θ) = ‖y −Xθ‖2
2 = ‖y‖2

2 − 2θ>X>y + θ>X>Xθ .

This function is a positive definite quadratic form, as X>X ∈ Rd×d has rank d. It is therefore
minimized at a unique point θ̂ such that ∇`(θ̂) = 0, which yields

−2X>y +X>Xθ̂ = 0

In this parametric setting, this gives an algebraic expression for the least-squares estimator

θ̂ = (X>X)−1X>y = θ∗ + (X>X)−1X>z .

If we are interested in estimating y∗ = Xθ∗, we can propose ŷ = Xθ̂, that takes the following form

ŷ = Xθ̂ = X(X>X)−1X>y = Xθ∗ +X(X>X)−1X>z .

The matrix X(X>X)−1X> ∈ Rn×n is the orthogonal projection onto the span of X, and is often
called the hat matrix, as it maps y to ŷ.
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4.1.1. Gaussian and sub-Gaussian cases. When z ∼ N (0, σ2Id), the distribution of these esti-
mates can be directly obtained, and we have

θ̂ ∼ N (θ∗, σ2(X>X)−1)

Xθ̂ ∼ N (Xθ∗, σ2X(X>X)−1X>) .

This is useful to derive bounds in expectation or high dimension on ‖θ̂− θ∗‖2
2 or ‖Xθ̂−Xθ∗‖2

2. More
generally, the following is formulated for any vector z ∈ Rd

Proposition 4.1. Let θ̂ be the least-squares estimator in the linear regression problem, and note
V = span(X). For any noise vector z ∈ Rn, it holds that

‖Xθ̂ −Xθ∗‖2 ≤ 2 sup
u∈V ∩Bn2

〈u, z〉 .

Proof. We start by using the definition of the least-squares estimator

‖y −Xθ̂‖2
2 ≤ ‖y −Xθ∗‖2

2

‖(y −Xθ∗) + (Xθ̂ −Xθ∗)‖2
2 ≤ ‖y −Xθ∗‖2

2

‖y −Xθ∗‖2
2 + ‖Xθ̂ −Xθ∗‖2

2 − 2〈X(θ̂ − θ∗), z〉 ≤ ‖y −Xθ∗‖2
2

‖Xθ̂ −Xθ∗‖2
2 ≤ 2〈X(θ̂ − θ∗), z〉

‖Xθ̂ −Xθ∗‖2 ≤ 2
〈 X(θ̂ − θ∗)
‖X(θ̂ − θ∗)‖

, z
〉
.

Taking u = X(θ̂ − θ∗)/‖X(θ̂ − θ∗)‖ ∈ V ∩ Bn2 gives the desired result.

Most proofs in linear regression where the estimator is defined as the minimizer of some function
f start with the statement f(θ̂) ≤ f(θ∗), and try to isolate the term ‖Xθ̂ −Xθ∗‖2

2.

Corollary 4.1. In the linear regression problem with rank (X) = r and noise vector z ∈ sGn(σ2),
we have that for some constant C > 0,

1√
n

E[‖Xθ̂ −Xθ∗‖2] ≤ Cσ

√
r

n
.

Proof. We apply Proposition 4.1 to obtain

E[‖Xθ̂ −Xθ∗‖2] ≤ 2E[ sup
u∈V ∩Bn2

〈u, z〉] .

The result follows directly, as in Example 2.4.

Note that the scaling in 1/
√
n is related to the notion of mean-squared error ‖Xθ̂ − Xθ∗‖2

2/n,
which is therefore of order σ2r/n. Bounds valid with high probability rather than in expectation can
be derived similarly. We remark that if we are interested in estimating θ∗ directly, we can use (in the
full rank case) the inequality

‖θ̂ − θ∗‖2
2 ≤

1

λmin(X>X)
‖Xθ̂ −Xθ∗‖2

2 .

Note that in a high-dimensional setting this is not possible: the rank of X is bounded by n, and
λmin(X>X) = 0. It is also problematic for the problem of prediction (i.e. estimating Xθ∗). In general
the spanof the design matrix X is all of Rn, and using the least-squares estimator leads to overfitting:
If y is in the span of X, we simply have ŷ = y, and the covariates do not provide any information.
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4.2. High-dimensional setting. Note that if the parameter vector θ∗ is known to belong to a set
C, we can adapt the techniques and proofs of Section 2 to these problems. We start by considering
the constrained least-squares estimator

θ̂ ∈ argmin
θ∈C

‖y −Xθ‖2
2 .

We obtain, the following, by adapting the proof of Proposition 4.1

4.2.1. Analysis of constrained estimator.

Proposition 4.2. Let θ̂ be the least-squares estimator constrained on C in the linear regression
problem, and note X(C − C) = {Xv : v ∈ C − C}. For any noise vector z ∈ Rn, it holds that

‖Xθ̂ −Xθ∗‖2
2 ≤ 2 sup

u∈X(C−C)
〈u, z〉

‖Xθ̂ −Xθ∗‖2 ≤ 2 sup
u∈X(C−C)

X(C−C)

〈u, z〉

Proof. We proceed as in the proof of Proposition 4.1 and obtain that

‖Xθ̂ −Xθ∗‖2
2 ≤ 2〈X(θ̂ − θ∗), z〉 .

We can either take u = X(θ̂−θ∗) ∈ X(C−C) or divide by its norm and obtain the second inequality.

Example 4.1. Let C = Bd1 , i.e. we assume that ‖θ∗‖1 ≤ 1. If we have ‖X(j)‖2 ≤
√
n for all the

columns of X and z ∈ sGn(σ2), it holds that

1

n
E[‖Xθ̂ −Xθ∗‖] ≤ Cσ

√
log(2d)

n
.

Indeed, in this case the supremum is taken over the image the `1 ball of radius 2 by X, which is a
polytope with 2d vertices or less, contained in the `2 ball of radius 2

√
n.

Example 4.2. If C is the set of vectors with sparsity k or less, i.e. we assume that ‖θ∗‖0 ≤ k,
and z ∈ sGn(σ2), it holds with probab ility 1− δ that

1

n
‖Xθ̂ −Xθ∗‖2

2 ≤ C
σ2k

n
log(d/k) + C

σ2

n
log(1/δ) .

Proof. We consider again the inequality ‖Xθ̂−Xθ∗‖2
2 ≤ 2〈X(θ̂− θ∗), z〉, and note Ŝ = supp(θ̂−

θ∗). We have |Ŝ| ≤ 2k and Xθ̂ − Xθ∗ = XŜ(θ̂ − θ∗), where XŜ ∈ Rn×|Ŝ|. Let ΦŜ be the matrix of
an orthonormal basis of the span of XŜ, with dimension rŜ (i.e. the rank of XŜ). Take u ∈ BrŜ2 such
that

ΦŜu =
XŜ(θ̂ − θ∗)
‖XŜ(θ̂ − θ∗)‖

.

With these notations, we have that

‖Xθ̂ −Xθ∗‖2 ≤ 2〈ΦŜu, z〉 = 2〈u,Φ>
Ŝ
z〉 .
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For the last term, we have Φ>
Ŝ
z ∈ sGrŜ(σ2). It is therefore equivalent to formulate this inequality as

‖Xθ̂ −Xθ∗‖2
2 ≤ 4 max

|S|=2k
sup
u∈BrS2

(
〈u, z〉

)2
.

Taking a 1/2 net, this yields, in two steps

P
(

sup
u∈BrS2

(
〈u, z〉

)2
> t
)
≤ 262ke−

t
8σ2

and (by a union bound)

P
(
‖Xθ̂ −Xθ∗‖2

2 > t
)
≤ 2

(
d

2k

)
62ke−

t
8σ2 .

Setting the last term to δ yields the desired result.

Notes: There are several issues with this estimator. The first one is that computing it is equivalent
to solving an NP-hard problem, so it cannot be implemented in practice, in particular for large
datasets. The other one is that it requires the sparsity to be known. One would wish to have an
estimator for which the same guarantees hold, without having to specify or know it in advance. This
property is called adaptivity.

4.2.2. Analysis of the BIC estimator. In order to address the latter issue, we consider the Bayesian
information criterion (BIC) estimator, defined for any parameter τ > 0 as

θ̂ ∈ argmin
θ∈Rd

{ 1

n
‖y −Xθ‖2

2 + τ 2‖θ‖0} .

Note that . While computationally hard to implement, the BIC estimator gives us a good benchmark
for sparse estimation.

Theorem 4.1. In the linear regression problem, with z ∈ sGn(σ2), the BIC estimator θ̂ with
regularization parameter

(3) τ 2 = 16 log(6)
σ2

n
+ 32

σ2 log(ed)

n
.

satisfies
1

n
‖Xθ̂ −Xθ∗‖2

2 ≤ Cσ2 |θ∗|0
log(ed/δ)

n
with probability at least 1− δ.

Proof. We begin as usual by noting that

1

n
|Y −Xθ̂|22 + τ 2|θ̂|0 ≤

1

n
|Y −Xθ∗|22 + τ 2|θ∗|0 .

It implies
|Xθ̂ −Xθ∗|22 ≤ nτ 2|θ∗|0 + 2z>X(θ̂ − θ∗)− nτ 2|θ̂|0 .

First, note that

2z>X(θ̂ − θ∗) = 2z>
( Xθ̂ −Xθ∗

|Xθ̂ −Xθ∗|2

)
|Xθ̂ −Xθ∗|2

≤ 2
[
z>
( Xθ̂ −Xθ∗

|Xθ̂ −Xθ∗|2

)]2

+
1

2
|Xθ̂ −Xθ∗|22 ,
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where we use the inequality 2ab ≤ 2a2 + 1
2
b2. Together with the previous display, it yields

(4) |Xθ̂ −Xθ∗|22 ≤ 2nτ 2|θ∗|0 + 4
[
z>U(θ̂ − θ∗)

]2 − 2nτ 2|θ̂|0

where

U(θ̂ − θ∗) =
Xθ̂ −Xθ∗

|Xθ̂ −Xθ∗|2
Next, we need to “sup out” θ̂. To that end, we decompose the sup into a max over cardinalities as
follows:

sup
θ∈Rd

= max
1≤k≤d

max
|S|=k

sup
supp(θ)=S

.

Applied to the above inequality, it yields

4
[
z>U(θ̂ − θ∗)

]2 − 2nτ 2|θ̂|0
≤ max

1≤k≤d

{
max
|S|=k

sup
supp(θ)=S

4
[
z>U(θ − θ∗)

]2 − 2nτ 2k
}

≤ max
1≤k≤d

{
max
|S|=k

sup
u∈B

rS,∗
2

4
[
z>ΦS,∗u

]2 − 2nτ 2k
}
,

where ΦS,∗ = [φ1, . . . , φrS,∗ ] is an orthonormal basis of the set {Xj, j ∈ S ∪ supp(θ∗)} of columns of
X and rS,∗ ≤ |S|+ |θ∗|0 is the dimension of this column span.

Using union bounds, we get for any t > 0,

P
(

max
1≤k≤d

{
max
|S|=k

sup
u∈B

rS,∗
2

4
[
z>ΦS,∗u

]2 − 2nτ 2k
}
≥ t)

≤
d∑

k=1

∑
|S|=k

P
(

sup
u∈B

rS,∗
2

[
z>ΦS,∗u

]2 ≥ t

4
+

1

2
nτ 2k

)
Moreover, using the ε-net argument, we get for |S| = k,

P
(

sup
u∈B

rS,∗
2

[
z>ΦS,∗u

]2 ≥ t

4
+

1

2
nτ 2k

)
≤ 2 · 6rS,∗ exp

(
−

t
4

+ 1
2
nτ 2k

8σ2

)
≤ 2 exp

(
− t

32σ2
− nτ 2k

16σ2
+ (k + |θ∗|0) log(6)

)
≤ exp

(
− t

32σ2
− 2k log(ed) + |θ∗|0 log(12)

)
where, in the last inequality, we used the definition (3) of τ .
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Putting everything together, we get

P
(
|Xθ̂ −Xθ∗|22 ≥ 2nτ 2|θ∗|0 + t

)
≤

d∑
k=1

∑
|S|=k

exp
(
− t

32σ2
− 2k log(ed) + |θ∗|0 log(12)

)

=
d∑

k=1

(
d

k

)
exp

(
− t

32σ2
− 2k log(ed) + |θ∗|0 log(12)

)
≤

d∑
k=1

exp
(
− t

32σ2
− k log(ed) + |θ∗|0 log(12)

)
=

d∑
k=1

(ed)−k exp
(
− t

32σ2
+ |θ∗|0 log(12)

)
≤ exp

(
− t

32σ2
+ |θ∗|0 log(12)

)
.

To conclude the proof, choose t = 32σ2|θ∗|0 log(12) + 32σ2 log(1/δ) and observe that combined
with (4), it yields with probability 1− δ,

|Xθ̂ −Xθ∗|22 ≤ 2nτ 2|θ∗|0 + t

= 64σ2 log(ed)|θ∗|0 + 64 log(12)σ2|θ∗|0 + 32σ2 log(1/δ)

≤ 224|θ∗|0σ2 log(ed) + 32σ2 log(1/δ) .

It follows from Theorem 4.1 that θ̂ adapts to the unknown sparsity of θ∗. Moreover, this holds
under no assumption on the design matrix X. However, it does not address the algorithmic problem.

4.2.3. Slow rate for the Lasso estimator. To obtain an estimator that is actually tractable, one
approach is to replace the `0 penalty by a convex surrogate, the `1 norm. Formally, the Lasso estimator
is defined, for τ > 0 as

θ̂ ∈ argmin
θ∈Rd

{ 1

n
‖y −Xθ‖2

2 + 2τ‖θ‖1} .

Lasso estimator is a bit more difficult because, by construction, it should more naturally adapt to
the unknown `1-norm of θ∗. This can be easily shown as in the next theorem.

Theorem 4.2. In the linear regression problem, with z ∈ sGn(σ2), assume that the columns of X
are normalized in such a way that maxj |Xj|2 ≤

√
n. Then, the Lasso estimator θ̂ with regularization

parameter

(5) 2τ = 2σ

√
2 log(2d)

n
+ 2σ

√
2 log(1/δ)

n
.

satisfies

1

n
|Xθ̂ −Xθ∗|22 ≤ 4|θ∗|1σ

√
2 log(2d)

n
+ 4|θ∗|1σ

√
2 log(1/δ)

n
with probability at least 1− δ. Moreover, there exists a numerical constant C > 0 such that

1

n
E
[
|Xθ̂ −Xθ∗|22

]
≤ C|θ∗|1σ

√
log(2d)

n
.
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Proof. From the definition of θ̂, it holds

1

n
|Y −Xθ̂|22 + 2τ |θ̂|1 ≤

1

n
|Y −Xθ∗|22 + 2τ |θ∗|1 .

Using Hölder’s inequality, it implies

|Xθ̂ −Xθ∗|22 ≤ 2ε>X(θ̂ − θ∗) + 2nτ
(
|θ∗|1 − |θ̂|1

)
≤ 2|X>ε|∞|θ̂|1 − 2nτ |θ̂|1 + 2|X>ε|∞|θ∗|1 + 2nτ |θ∗|1
= 2(|X>ε|∞ − nτ)|θ̂|1 + 2(|X>ε|∞ + nτ)|θ∗|1

Observe now that for any t > 0,

P(|X>ε|∞ ≥ t) = P( max
1≤j≤d

|X>j ε| > t) ≤ 2de−
t2

2nσ2

Therefore, taking t = σ
√

2n log(2d) + σ
√

2n log(1/δ) = nτ , we get that with probability 1− δ,

|Xθ̂ −Xθ∗|22 ≤ 4nτ |θ∗|1 .

The bound in expectation follows using the same argument.

Notice that the regularization parameter (5) depends on the confidence level δ. This not the case
for the BIC estimator (see (3)).

4.2.4. Fast rate for the Lasso. Note that the rate is sub-optimal, but that the estimator can now
be efficiently computed, as it is a minimizer of a convex function. The result can nevertheless be
improved, and we can obtain a fast rate, while maintaining adaptivity in ‖θ∗‖0. This requires to
modify the proof, and to actually show that ‖θ̂ − θ∗‖2 is small. It is not the case in any of the
previous proofs, and actually sometimes not the case. In particular, if X has two identical columns,
it is impossible to estimate θ∗ accurately: the problem is ill-posed. However, if an assumption is made
on the design matrix X, it will be possible to prove the desired result.

Definition 4.1. Let A ∈ Rn×d. It is said to satisfy the restricted isometry property (RIP) for
sparsity k, with parameter α ∈ (0, 1) if for all v ∈ Rd such that ‖v‖0 ≤ k, it holds that

(1− α)‖v‖2
2 ≤ ‖Xv‖2

2 ≤ (1 + α)‖v‖2
2

Some aspects of this property are studied in Examples sheet 3.

Theorem 4.3. Fix n ≥ 2, in the linear regression problem where z ∈ sGn(σ2). Moreover, assume
that |θ∗|0 ≤ k and that X/

√
n satisfies the restricted isometry property, for sparsity k, and parameter

α. The Lasso estimator θ̂ with regularization parameter defined by

2τ = 8σ

√
log(2d)

n
+ 8σ

√
log(1/δ)

n

satisfies, for some Cα > 0
1

n
|Xθ̂ −Xθ∗|22 ≤ Cαkσ

2 log(2d/δ)

n
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and

|θ̂ − θ∗|1 ≤ Cαkσ

√
log(2d/δ)

n
.

with probability at least 1− δ. Moreover,

1

n
E
[
|Xθ̂ −Xθ∗|22

]
≤ Cαkσ

2 log(2d)

n
, and E

[
|θ̂ − θ∗|1

]
. kσ

√
log(2d/δ)

n
.

Proof. From the definition of θ̂, it holds

1

n
|Y −Xθ̂|22 ≤

1

n
|Y −Xθ∗|22 + 2τ |θ∗|1 − 2τ |θ̂|1 .

Adding τ |θ̂ − θ∗|1 on each side and multiplying by n, we get

|Xθ̂ −Xθ∗|22 + nτ |θ̂ − θ∗|1 ≤ 2ε>X(θ̂ − θ∗) + nτ |θ̂ − θ∗|1 + 2nτ |θ∗|1 − 2nτ |θ̂|1 .

Applying Hölder’s inequality and using the same steps as in the proof of Theorem 4.2, we get that
with probability 1− δ, we get

ε>X(θ̂ − θ∗) ≤ |ε>X|∞|θ̂ − θ∗|

≤ nτ

2
|θ̂ − θ∗|1 ,

where we used the fact that |Xj|22 ≤ n + 1/(14k) ≤ 2n. Therefore, taking S = supp(θ∗) to be the
support of θ∗, we get

|Xθ̂ −Xθ∗|22 + nτ |θ̂ − θ∗|1 ≤ 2nτ |θ̂ − θ∗|1 + 2nτ |θ∗|1 − 2nτ |θ̂|1
= 2nτ |θ̂S − θ∗|1 + 2nτ |θ∗|1 − 2nτ |θ̂S|1
≤ 4nτ |θ̂S − θ∗|1(6)

Using now the Cauchy-Schwarz inequality the RIP on X/
√
n respectively, we get since |S| ≤ k,

|θ̂S − θ∗|1 ≤
√
|S||θ̂S − θ∗|2 ≤

1√
1− α

√
k

n
|Xθ̂ −Xθ∗|2 .

Combining this result with (6) yields the desired results. The bound in expectation follows using the
same argument.

5. Matrix problems. In many high-dimensional problems, the data is available in the form of
a matrix. They can be vectorized and the results of the previous sections ca be applied, but it is often
better to exploit notions specific to matrices (rank, eigenvalues, etc) in these problems. Matrices can
also be used in problems that do not directly appear to be related to them, e.g. involving graphs or
dependencies between variables of a vector.

5.1. Notations. For a real valued matrix A ∈ Rm×n, the rank of A is the dimension of the span
of A. We have rank(A) = r ≤ min(m,n). The singular value decomposition of A is the factorization

A = UDV > =
r∑
j=1

σjujv
>
j ,
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where D is the diagonal of the σj > 0, and the columns of U and V are orthonormal, formed by the
eigenvectors of AA> and A>A

AA>uj = σ2
juj and A>Auj = σ2

j vj .

The largest singular value σmax(A) therefore satisfies

σmax(A) = max
x∈Rn\{0}

‖Ax‖
‖x‖

= max
y∈Sm−1

x∈Sn−1

y>Ax .

For a matrix Σ that is symmetric and positive semidefinite (e.g. and i.e., a covariance matrix), the
singular values are eigenvalues and we have

λmax(Σ) = max
x∈Sn−1

x>Ax .

The operator norm of a matrix is the value of its largest singular value. The Frobenius norm is the
`2 norm of all the singular values, it is also equal to the `2 norm of the matrix, treated as a vector.

5.2. Additive models. In this section, we focus on problems of the type

Y = Θ∗ + Z ,

where the observation is the matrix Y , the true signal is Θ∗, and the noise is Z ∈ sGm×d(σ
2/n),

representing n i.i.d observations of Y with noise level σ2. If no assumption can be made about Θ∗,
and our estimate is Y - corresponding to the average of observations, or least-squares estimate with
n independent observations - the error is, measured in Frobenius norm

‖Y −Θ∗‖2
F ≤ ‖Z‖2

F ≈ σ2md

n

5.2.1. Low-rank signals. In high-dimensional settings where m, d can be much larger than n, this
can be very problematic. If Θ∗ is assumed to have a simple structure, e.g. has small rank, we can use
a constrained estimator of the type

Θ̂ ∈ argmin
rank(Θ)≤r

‖Y −Θ‖2
F .

One can check that that in this case the SVD of Θ̂ and Y are directly related. If we have

Y =

min(m,d)∑
j=1

σ̂jûj v̂
>
j ,

the decomposition of Θ̂ can be obtained by truncating the decomposition of Y , as we have

Θ̂ =
r∑
j=1

σ̂jûj v̂
>
j .

It is actually easier to analyze a thresholded (rather than truncated) version of the decomposition of
Y , defined by some real τ > 0 as

Y =

min(m,d)∑
j=1

σ̂j1{σ̂j > 2τ} ûj v̂>j ,
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Proposition 5.1. Let Θ̂ be the thresholded SVD estimator in the linear model, and let

2τ = 8σ

√
(d ∨m) log(12)

n
+ 4σ

√
2 log(1/δ)

n
.

For some constant C > 0, it holds with probability at least 1− δ that

‖Θ̂−Θ∗‖2
F ≤ C

σ2rank(Θ∗)

n

(
(d ∨m) + log(1/δ)

)
.

We will use the following lemma, given without proof. It can be established by the same techniques
as a problem in the Examples sheet.

Lemma 5.1. Let Z ∈ sGm×d(σ
2/n), and τ as in Proposition 5.1. There is an event A, with

probability 1− δ, on which it holds that ‖Z‖op ≤ τ .

We also use the following result

Theorem 5.1 (Weyl’s inequality). Denoting by σj the singular values of Θ∗ and by σ̂j the singular
values of Y (in nondecreasing order), it holds for all j that

|σj − σ̂j| ≤ ‖Y −Θ∗‖op .

It is useful in this model, as Y −Θ∗ = Z, and the operator norm is bounded by τ on the event A.
Based on these observations, we can prove Proposition 5.1

Proof. Assume without loss of generality that the singular values of Θ∗ and y are arranged in a
non increasing order: σ1 ≥ σ2 ≥ . . . and σ̂1 ≥ σ̂2 ≥ . . . . Define the set Ŝ = {j : |σ̂j| > 2τ}.

Observe first that it follows from Lemma 5.1 that ‖Z‖op ≤ τ for τ chosen as in (??) on an event
A such that P(A) ≥ 1− δ. The rest of the proof is on A.

It follows from Weyl’s inequality that |λ̂j − λj| ≤ ‖Z‖op ≤ τ . It implies that Ŝ ⊂ {j : |λj| > τ}
and Ŝc ⊂ {j : |λj| ≤ 3τ}.

Next define the oracle Θ̄ =
∑

j∈Ŝ λjujv
>
j and note that

(7) ‖Θ̂−Θ∗‖2
F ≤ 2‖Θ̂− Θ̄‖2

F + 2‖Θ̄−Θ∗‖2
F

Using Cauchy-Schwarz, we control the first term in (7) as follows

‖Θ̂− Θ̄‖2
F ≤ rank(Θ̂− Θ̄)‖Θ̂− Θ̄‖2

op ≤ 2|S|‖Θ̂− Θ̄‖2
op

Moreover,

‖Θ̂− Θ̄‖op ≤ ‖Θ̂− y‖op + ‖y −Θ∗‖op + ‖Θ∗ − Θ̄‖op

≤ max
j∈Sc
|λ̂j|+ τ + max

j∈Sc
|λj| ≤ 6τ .

Therefore,

‖Θ̂− Θ̄‖2
F ≤ 72|S|τ 2 = 72

∑
j∈S

τ 2 .

The second term in (7) can be written as

‖Θ̄−Θ∗‖2
F =

∑
j∈Sc
|λj|2 .
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Plugging the above two displays in (7), we get

‖Θ̂−Θ∗‖2
F ≤ 144

∑
j∈S

τ 2 +
∑
j∈Sc
|λj|2

Since on S, τ 2 = min(τ 2, |λj|2) and on Sc, |λj|2 ≤ 3 min(τ 2, |λj|2), it yields,

‖Θ̂−Θ∗‖2
F ≤ 432

∑
j

min(τ 2, |λj|2)

≤ 432

rank(Θ∗)∑
j=1

τ 2

= 432 rank(Θ∗)τ 2 .

5.3. Spectral methods in estimation. In this section, we focus on symmetric matrices that are
semidefinite positive, i.e. Σ ∈ Rn×n such that for all u ∈ Rn, we have u>Σu ≥ 0. Their eigendecom-
position can be written in the form

Σ =
n∑
i=1

λi viv
>
i ,

where the vi are orthonormal eigenvectors of Σ, with associated nonnegative eigenvalues λi. In many
statistical problems, we can construct from the observations a matrix Σ̂ that has for mean a SDP
matrix Σ, where the leading eigenvector v = v1 ∈ S (for some parameter set S) is important. It
can either be the signal that we wish to estimate, or it can give information about it (dependence
structure among coefficients, clustering in a network, etc). The vector v is a maximizer of u>Σu over
the unit sphere, and therefore on S. It is natural to try to estimate v by its analogue for Σ̂

v̂ ∈ argmax
u∈S

u>Σ̂u .

The following theorem allows us to control how good of an estimate it is.

Theorem 5.2 (Davis–Kahan). Let Σ be a semidefinite positive matrix with λ2 ≤ 1, λ1 = 1 + θ.
It holds that

min
ε∈{±1}

|εv̂ − v|2 ≤ ‖v̂v̂> − vv>‖2
F ≤

2
√

2

θ
‖Σ̂− Σ‖op,S .

There are a few interesting points about this result. The norm ‖ · ‖op,S is a proxy of the operator
norm adapted for S; we discuss it later. The error is measured between v and ±v̂ because of the
ambiguity up to a sign of eigenvectors. This ambiguity disappears when considering vv>, which is
the orthonormal projector on the space generated by v. This error is governed by two quantities:
the spectral gap θ, which measures the curvature of the quadratic norm, and the operator norm of
the difference between the two matrices. It makes sense that the spectral gap is involved: if it is too
small, the vectors v2, v3, etc., who are orthonormal to v1, are “almost maximizers” of the quadratic
form generated by Σ, and could therefore be close to maximizers of the one generated by Σ̂.

Proof. We establish the first inequality

min
ε∈{±1}

|εv̂ − v|2 = 2− 2|v̂>v| ≤ 2− 2(v̂>v)2 = ‖v̂v̂> − vv>‖2
F .
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We establish the second one by using the definition of v as leading eigenvector of Σ and the fact that
u>Σu ≤ 1 + θ(v>u)2 for all unit vectors u. We therefore have

v>Σv − v̂>Σv̂ ≥ θ
(
1− (v>v̂)2

)
=
θ

2
‖v̂v̂> − vv>‖2

F .

We should therefore only need to bound this quantity

v>Σv − v̂>Σv̂ = v>Σ̂v − v̂>Σv̂ − v>(Σ̂− Σ)v

≤ v̂>Σ̂v̂ − v̂>Σv̂ − v>(Σ̂− Σ)v

≤ 〈Σ̂− Σ, v̂v̂> − vv>〉
≤ ‖Σ̂− Σ‖op,S‖v̂v̂> − vv>‖1

≤
√

2‖Σ̂− Σ‖op,S‖v̂v̂> − vv>‖F

Together, this yields the desired inequality.

The norm ‖ · ‖op,S can be taken as the norm such that the following inequality is satisfied

〈A, v̂v̂> − vv>〉 ≤ ‖A‖op,S‖v̂v̂> − vv>‖1 ,

when v, v̂ are two unit vectors of S. If S is the whole unit sphere, it is the usual operator norm.
Otherwise, it can be more restrictive: e.g. if S is the set of unit vectors with a sparsity less than k,
it is the maximum of the operator norms of all the submatrices of A of size 2k. It can naturally be
modified for other cases.
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