
Principles of Statistics Part II - Michaelmas 2018

Lecture 1: Introduction
Lecturer: Quentin Berthet

This course is concerned with presenting some of the mathematical principles of
statistical theory. One of the general objectives of statistics is to “reverse-engineer”
probability, i.e. to make a statement about an unknown probability distribution, given
access to draws from this distribution. To make this statement more precise, we describe
the following formalism

Consider a real-valued random variable X, on a probability space Ω, with distribution
defined for all t ∈ R by

F (t) = P(ω ∈ Ω : X(ω) ≤ t) .

When X is discrete it is equal to

F (t) =
∑
x≤t

f(x) ,

and f is called the probability mass function of X (p.m.f.). When X is continuous it is
equal to

F (t) =

∫ t

−∞
f(s)ds ,

and f is called the probability density function of X (p.d.f.). Many problems in statistics
are concerned with determining the distribution of a sample, n independent copies
X1, · · · , Xn of X. We refer to n as the sample size. Often, the distribution belongs to
a certain class that can be parametrized by an unknown θ.

Definition 0.1. A statistical model for a sample from X is any family

{f(θ, ·) : θ ∈ Θ} or {Pθ : θ ∈ Θ}

of p.m.f. or p.d.f. f(θ, ·), or of probability distribution Pθ for the law of X. The index
set Θ is called the parameter space

Example 0.1. Some statistical models and their parameter spaces

i) N (θ, 1) ; θ ∈ Θ = R .

ii) N (µ, σ2) ; θ = (µ, σ2) ∈ Θ = R× (0,∞) .
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2 1: Introduction

iii) Exp(θ) ; θ ∈ Θ = (0,∞) .

iv) N (θ, 1) ; θ ∈ Θ = [−1, 1] .

Definition 0.2. For a variable X with distribution P , we say that the model
{Pθ : θ ∈ Θ} is correctly specified if there exists θ ∈ Θ such that Pθ = P .

We will often write θ0 for the true value of θ to distinguish it from other elements of
the parameter space Θ. We will say that the Xi are i.i.d from the model {Pθ : θ ∈ Θ}
in this case. As an example, if X ∼ N (2, 1) the model in i) is correctly specified but
the model in iv) is not.

Somewhat more formally, some of the main goals of statistics are the following prob-
lems:

1. Estimation: Constructing θ̂ = θ̂(X1, . . . , Xn), i.e. a function of the observations,
such that for all θ ∈ Θ, when Xi ∼ Pθ, the estimator θ̂ is close to θ.

2. Testing Hypotheses: Determining whether we are under the null hypothesis
H0 : θ = θ0 or the alternative H1 : θ 6= θ0, by a test ψn = ψ(X1, . . . , Xn) such that
ψn = 0 when H0 is true, and ψn = 1 when H1 is true, with high probability.

3. Inference: Find intervals, or sets, of confidence Cn = C(X1, . . . , Xn) such that
for 0 < α < 1 we have Pθ(θ ∈ Cn) = 1− α (or ≥ 1− α), for all θ ∈ Θ, where α is
the significance level. This is useful for uncertainty quantification.

1. The likelihood principle.

1.1. Basic ideas and concepts. We study the following example: let X1, . . . , Xn be
i.i.d. from a Poisson model {Poi(θ) : θ ≥ 0}, with numerical values Xi = xi for
1 ≤ i ≤ n. The joint distribution of the sample is

f(x1, . . . , xn; θ) = Pθ(X1 = x1, . . . , Xn = xn)

=
n∏
i=1

Pθ(Xi = xi) (i.i.d.)

=
n∏
i=1

f(xi, θ)

=
n∏
i=1

(
e−θ

θxi

xi!

)
= e−nθ

n∏
i=1

θxi

xi!
= Ln(θ)

It is the probability of occurence of this particular sample (X1 = x1, . . . , Xn = xn), as
a function of the unknown parameter θ ≥ 0. One of the first principles of this course
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is that it is helpful to think of Ln(·) as a random function of Θ to R, the randomness
coming from the Xi.

The idea of the likelihood principle is to find θ that maximizes the above probability.
If the Xi are continuous, we use the p.d.f for f(xi, θ). In the current example, it is
equivalent to maximize log(Ln(θ)) = `n(θ) over (0,∞).

`n(θ) = −nθ + log(θ)
n∑
i=1

xi −
n∑
i=1

log(xi!) .

Taking a first order condition i.e. setting `′n(θ) = 0 gives the equation

−n+
1

θ

n∑
i=1

xi = 0 ,

which has solution θ̂ = 1
n

∑n
i=1Xi, the sample mean. This is indeed optimal as one can

check that `′′n(θ) < 0 for all θ > 0. The case where all the xi are zero can be checked by
hand: in this case, maximizing `n is directly equivalent to maximizing −nθ and θ̂ = 0.
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Lecture 2: Maximum likelihood estimator
Lecturer: Quentin Berthet

We have recalled in the past lecture, through an example, the principle of maximizing
the likelihood. Formally, we define the following.

Definition 1.1. Let {f(·, θ) : θ ∈ Θ} be a statistical model of p.d.f./p.m.f. f(x, θ)
for the distribution P of a random variable X and consider observing n realisations xi,
for 1 ≤ i ≤ n of i.i.d. copies X1, . . . , Xn of X.

The likelihood function of the model is defined as

Ln(θ) =
n∏
i=1

f(xi, θ) .

The log-likelihood function of the model is defined as

`n(θ) = log(Ln) =
n∑
i=1

log(f(xi, θ)) .

The normalized log-likelihood function of the model is defined as

¯̀
n(θ) =

1

n
`n(θ) =

1

n

n∑
i=1

log(f(xi, θ)) .

Definition 1.2. We define a maximum likelihood estimator as any element θ̂ =
θ̂MLE = θ̂MLE(X1, . . . , Xn) ∈ Θ for which

Ln(θ̂) = max
θ∈Θ

Ln(θ) .

Remark. By definition of this estimator and of the functions above,

- It is equivalent to maximize Ln, `n or ¯̀
n, so any of these functions can be used in

the definition of θ̂MLE.

- The estimator θ̂MLE is a function of X1, . . . , Xn only.

- The above definitions can be generalized whenever a joint p.m.f./p.d.f. forX1, . . . , Xn

can be specified, even without the i.i.d. assumption.
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Example 1.1. For Xi ∼ Poi(θ), θ ≥ 0, θ̂MLE = 1
n

∑n
i=1 Xi = X̄n. (see Lecture 1)

Example 1.2. For Xi ∼ N (µ, σ2), θ = (µ, σ2)> ∈ R× (0,∞), (see Example sheet)

Example 1.3. In the Gaussian linear model Y = Xθ+ε, known X ∈ Rn×p, unknown
θ ∈ Rp and ε ∼ N (0, In), the observations Yi = X>i θ+εi are not identically distributed,
but a joint distribution f(Y1, . . . , Yn, θ) can still be specified, and the MLE coincides
with the least-squares estimator (see Example sheet).

In these examples and several other cases, the maximum likelihood estimator is found
as the unique zero of the gradient of the log-likelihood.

Definition 1.3. For Θ ⊆ Rp and `n differentiable in θ the score function Sn is
defined as

Sn(θ) = ∇θ `n(θ) =
[ ∂

∂θ1

`n(θ), . . . ,
∂

∂θp
`n(θ)

]>
.

Remark. As noted above, one of the main uses of this function is to look for the
MLE θ̂ as a solution to Sn(θ̂) = 0, which is a common heuristic to maximize `n. We
will often consider situations such that this is a necessary and sufficient condition.

It is very important to remember the point of view that `n and Sn are functions of
the parameter θ, the randomness being in the values of the Xi. Therefore, derivatives
(and gradients) are taken with respect to θ, not the xi. To remember this, it can help
to notice that after observation, the values xi are fixed, but the value of θ is unknown.
It makes more sense to let θ vary, which is what derivatives and gradients mean.

1.2. Information geometry & likelihood function. Given access to a sample from a
distribution, the likelihood principle is to build a random function ¯̀

n out of the values
of the sample, and to maximize it. In order to understand the behaviour of the MLE,
it is natural to examine what would happen if we were to maximize the expectation of
this random function.

Definition 1.4. We recall that for a variable X with distribution Pθ on X ⊆ Rd,
and g : X → R, we have

Eθ[g(X)] =

∫
X
g(x)dPθ(x) =

∫
X
g(x)f(x, θ)dx ,

when X is continuous and Pθ has p.d.f. f(x, θ) and

Eθ[g(X)] =
∑
x∈X

g(x)f(x, θ) ,

when X is discrete and Pθ has p.m.f. f(x, θ).



Lecture 2: Maximum likelihood estimator 3

Theorem 1.1. For a model {f(·, θ) : θ ∈ Θ}, and a variable X ∼ P such that
E[| log(f(X, θ)|] < ∞, if the model is well specified with f(x, θ0) as p.d.f. of P , the
function ` defined by

`(θ) = Eθ0 [log(f(X, θ)]

is maximized at θ0.

Remark. This theorem suggests that if we had knowledge of the function `, we
could recover exactly θ0, the “true value” of the unknown parameter. Since we do
not have access to this function, we maximize instead a sample approximation of this
function ¯̀

n. Indeed, we recall the definition

¯̀
n(θ) =

1

n

n∑
i=1

log(f(xi, θ)) ,

which is the empirical average of i.i.d variables with mean `(θ).

Proof of Theorem 1.1. For all θ ∈ Θ, we have

`(θ)− `(θ0) = Eθ0 [log(f(X, θ)]− Eθ0 [log(f(X, θ0)] = Eθ0

[
log

f(X, θ)

f(X, θ0)

]
.

For a concave function ϕ, Jensen’s inequality gives E[ϕ(Z)] ≤ ϕ(E[Z]). Therefore, by
concavity of the logarithm,

`(θ)− `(θ0) ≤ logEθ0

[ f(X, θ)

f(X, θ0)

]
= log

∫
X

f(x, θ)

f(x, θ0)
f(x, θ0)dx = log(1) = 0 .

Indeed, by definition of a p.d.f., we have that
∫
X f(x, θ)dx = 1 for all θ ∈ Θ.

Remark. If the variable X is on a discrete space, the same proof applies, with
p.m.f. and sum rather than with p.d.f. and integral.

If the assumption strict identifiability of the model parametrization is satisfied, i.e.
f(·, θ) = f(·, θ′) ⇐⇒ θ = θ′, we are not in the equality case of Jensen’s, and the
inequality is strict. In this case, maximizing ¯̀

n(θ) will approximately maximize `(θ)
and thus approximate the true value θ0.

Information theory gives another interpretation: the quantity `(θ0)− `(θ) defined as

KL(Pθ0 , Pθ) =

∫
X
f(x, θ0) log

f(x, θ0)

f(x, θ)
dx ,

is called the Kullback-Leibler divergence, or entropy between the distributions Pθ0 and
Pθ. It can be thought of as a “distance” between distributions, and the reformulation
`(θ) = `(θ0) − KL(Pθ0 , Pθ) shows that maximizing the likelihood is akin to minimizing
an approximate “distance” to θ0.
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Lecturer: Quentin Berthet

We have seen in the past lecture that the MLE θ̂ can often be obtained as a solution
to the equation Sn(θ̂) = ∇θ

¯̀
n(θ̂) = 0, i.e. that

1

n

n∑
i=1

∇θ log f(xi, θ̂) = 0 ,

by exchanging finite sum and derivatives. Furthermore, we have also seen that the
expectation ` of the function `n is maximized at θ0, which suggests that a similar
equation must hold with expectation Eθ0 .

Theorem 1.2. For a parametric model {f(·, θ) : θ ∈ Θ} regular enough that inte-
gration and differentiation can be exchanged, we have for all θ ∈ int(Θ)

Eθ[∇θ log f(X, θ)] = 0 .

Proof. We compute explicitly the expectation

Eθ[∇θ log f(X, θ)] =

∫
X

(
∇θ log f(x, θ)

)
f(x, θ)dx

=

∫
X

(
∇θf(x, θ)

1

f(x, θ)

)
f(x, θ)dx

=

∫
X
∇θf(x, θ)dx

= ∇θ

∫
X
f(x, θ)dx = 0 .

The last two equalities are due, successively, to the assumed regularity of the model
and to the fact that

∫
X f(x, θ)dx = 1 for all θ ∈ Θ.

As a consequence, we have in particular Eθ0 [∇θ log f(X, θ0)] = 0.

Definition 1.5. For a parameter space Θ ⊆ Rp, we define for all θ ∈ int(Θ) the
Fisher information matrix as

I(θ) = Eθ[∇θ log f(X, θ)∇θ log f(X, θ)>] ,

Informal notes, based on past lecture notes by Richard Nickl. Please let me know of any errors.
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2 3: Fisher information

i.e. coefficient-wise

Iij(θ) = Eθ

[ ∂
∂θi

log f(X, θ)
∂

∂θj
log f(X, θ)

]
.

Remark. In dimension 1, we have

I(θ) = Eθ

[( d

dθ
log f(X, θ)

)2]
= Varθ

[ d

dθ
log f(X, θ)

]
,

as it is a centered random variable. In particular, I(θ0) describes the random variations
of Sn(θ0) around zero, its mean. This helps to quantify the precision of θ̂ around θ0 as
a solution of Sn(θ̂) = 0.

Theorem 1.3. With the same regularity assumptions, for all θ ∈ int(Θ), we have

I(θ) = −Eθ[∇2
θ log f(X, θ)] .

i.e. coefficient-wise

Iij(θ) = −Eθ

[ ∂2

∂θi∂θj
log f(X, θ)

]
.

Proof. We develop the term in the expectation

∇2
θ log f(X, θ) = ∇θ

( 1

f(X, θ)
∇θf(X, θ)

)
=

1

f(X, θ)
∇2
θf(X, θ)− 1

f 2(X, θ)
∇θf(X, θ)∇θf(X, θ)>

Taking expectation yields

−Eθ[∇2
θ log f(X, θ)] = −

∫
X

1

f(x, θ)
∇2
θf(x, θ) f(x, θ)dx+ Eθ

[ 1

f 2(X, θ)
∇θf(X, θ)∇θf(X, θ)>

]
= 0 + Eθ

[( 1

f(X, θ)
∇θf(X, θ)

)( 1

f(X, θ)
∇θf(X, θ)

)>]
= Eθ[∇θ log f(X, θ)∇θ log f(X, θ)>]

= I(θ) .

The integral is cancelled by exchanging integral and derivatives on
∫
X f(x, θ)dx = 1.

Remark. In dimension 1, we extend the remark above to

I(θ) = Varθ

[ d

dθ
log f(X, θ)

]
= −Eθ

[ d2

dθ2
log f(X, θ)

]
This shows a relationship between the variance of the score and the curvature of `,
clearly two important quantities when describing the quality of θ̂ (the maximum of `n)
as an approximation of θ0 (the maximum of `).
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Definition 1.6. For a random vector X = (X1, . . . , Xn) ∈ Rn, the Fisher infor-
mation matrix is naturally defined as

In(θ) = Eθ[∇θ log f(X1, . . . , Xn, θ)∇θ log f(X1, . . . , Xn, θ)
>] ,

Proposition 1.1. When the vector X = (X1, . . . , Xn) ∈ Rn is composed of n
i.i.d. copies of a random variable and {f(·, θ) ; θ ∈ Θ} is a model for X, the Fisher
information tensorizes, i.e.

In(θ) = n I(θ) ,

where I(θ) is the Fisher information for one copy Xi.

Proof. Since f(X1, . . . , Xn, θ) =
∏n

i=1 f(Xi, θ) by independence of the Xi, it holds
that log f(X1, . . . , Xn, θ) =

∑n
i=1 log f(Xi, θ) and

In(θ) = Eθ

[ n∑
i=1

n∑
j=1

∇θ log f(Xi, θ)∇θ log f(Xj, θ)
>
]

For all Xi, we recall that Eθ[∇θ log f(Xi, θ)] = 0, so by independence, only the n cross
terms of this sum remain, giving the desired result.
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Lecture 4: Cramer-Rao bound and Convergence
Lecturer: Quentin Berthet

The following result formalizes the link between Fisher information and precision of
estimation.

Theorem 1.4 (Cramèr–Rao lower bound). Let {f(·, θ) : θ ∈ Θ} be a “regular”
statistical model with p = 1 and Θ ⊆ R. Let θ̃ = θ̃(X1, . . . , Xn) be an unbiased estimator
based on the observation of n i.i.d. Xi from this model. We have, for all θ ∈ int(Θ)

Varθ(θ̃) = Eθ[(θ̃ − θ)2] ≥ 1

nI(θ)
.

Proof. For Varθ(θ̃) < ∞, we first treat the case of n = 1. We recall that by the
Cauchy–Schwarz inequality, it holds for all Y, Z that

Cov(Y, Z)2 ≤ Var(Y ) Var(Z) .

Taking Y = θ̃ and Z = d
dθ

log f(X, θ), we have

Varθ(θ̃) ≥
Covθ(θ̃, Z)2

Varθ(Z)
.

We recall that E[Z] = 0 and that Varθ(Z) = I(θ) by the results and definitions above.
As a consequence, Covθ(θ̃, Z) = Eθ[θ̃ Z] and we have

Eθ

[
θ̃

d

dθ
log f(X, θ)

]
=

∫
X
θ̃(x)

d

dθ
f(x, θ)

1

f(x, θ)
f(x, θ)dx

=
d

dθ

∫
X
θ̃(x)f(x, θ)dx

=
d

dθ
θ = 1 .

As a consequence, for n = 1, we have

Varθ(θ̃) ≥
1

I(θ)

For general n, we use Z = d
dθ

log f(X1, . . . , Xn, θ), note that Varθ(Z) = In(θ) = nI(θ),

and using the same simplification as above to show that Eθ[θ̃ Z] = 1 (Example sheet).
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The assumption that the model is regular enough is for now equivalent to saying that
integrals and derivatives can be exchanged. We will be a bit more precise later, and
describe some conditions that guarantee such regularity. These subtleties are studied
in Probability and Measure, and are not examinable in this course.

The Cramèr–Rao lower bound is a statement about the variance of an estimator, so
it is univariate in nature. It is possible to say something in the multivariate parameter
case, for θ ∈ Rp, p ≥ 1. Indeed, for any differentiable functional Φ : Θ→ R, we consider
Φ̃ an unbiased estimator of Φ(θ) based the on observation of X1, . . . , Xn, n i.i.d. copies
from model {f(·, θ) : θ ∈ Θ}.

Proposition 1.2. For all θ ∈ int(Θ), with the definitions above, we have

Varθ(Φ̃) ≥ 1

n
∇θ Φ(θ)> I−1(θ) ∇θ Φ(θ) .

As an example, considering Φ(θ) = α>θ =
∑p

i=1 αi θi, we have ∇θΦ(θ) = α, so the
lower bound implies Varθ(Φ̃) ≥ 1

n
α>I−1(θ)α.

Example 1.4. Let (X1, X2)> ∼ N (θ,Σ), where θ = (θ1, θ2)> and where Σ is a
known positive definite matrix, the sample size being n = 1.

- Case 1: Consider the estimation of θ1 when θ2 is known. The model is one-
dimensional with parameter θ1 and the Fisher information is I1(θ1).

- Case 2: Consider the estimation of θ1 when θ2 is unknown. We can consider the
functional Φ(θ) = θ1 and the result above to establish the Fisher information in
this new statistical model.

The comparison of these quantities is studied in one of the questions in the example
sheet. Of particular interest is the case where Σ is diagonal, corresponding to indepen-
dent X1 and X2.

2. Asymptotic Theory for MLE.

Not all estimators are unbiased for fixed sample size, but a desirable property that
we could expect is that all reasonable estimators satisfy

Eθ[θ̃n]→ θ , when n→∞ and sampling from Pθ.

A stronger, but closely related concept is that of consistency of θ̃.

θ̃n
?−→ θ , when n→∞ and sampling from Pθ.

In a sense that should be specified, as we are evaluating the convergence of a random
variable.

Informal notes, based on past lecture notes by Richard Nickl. Please let me know of any errors.
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2.1. Stochastic convergence concepts.

Definition 2.1 (Convergence almost surely and in probability). Let (Xn)n≥0, X,
be random vectors in Rk, defined on a probability space (Ω,A,P).

i) We say that Xn converges to X almost surely, or Xn
a.s.−−→ X as n→∞, if

P(ω ∈ Ω : ‖Xn(ω)−X(ω)‖ → 0 as n→∞) = P(‖Xn −X‖ → 0 as n→∞) = 1 .

ii) We say that Xn converges to X in probability, or Xn
P−→ X as n → ∞, if for all

ε > 0
P(‖Xn −X‖ > ε)→ 0 .

Remark. Convergence of vectors is equivalent to convergence of each coefficient,
for both these definitions. This follows naturally from the definition for almost sure
convergence, and addressed in the Example Sheet for convergence in probability.

Definition 2.2 (Convergence in distribution). Let (Xn)n≥0, X, be random vectors
in Rk, defined on a probability space (Ω,A,P). We say that Xn converges to X in

distribution, or Xn
d−→ X as n→∞ if

P(Xn � t)→ P(X � t) ,

for all t where the map t 7→ P(X � t) is continuous.

Remark. We write {X � t} as shorthand for {X(1) ≤ t1, . . . , X(k) ≤ tk}. For k = 1,
the definition becomes P(Xn ≤ t)→ P(X ≤ t).

The following facts about stochastic convergence follow from these definitions and
can be proved in measure theory.

Proposition 2.1. Xn
a.s.−−→ X ⇒ Xn

P−→ X ⇒ Xn
d−→ X as n→∞.

Proposition 2.2 (Continuous mapping theorem). If Xn, X take values in X ⊂ Rd

and g : X → R is continuous, then Xn
a.s./P/d−−−−−→ X implies g(Xn)

a.s./P/d−−−−−→ g(X) .
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Lecture 5: Central limit theorem and inference
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Proposition 2.3 (Slutsky’s lemma). Let Xn
d−→ X and Yn

d−→ c where c is deter-
ministic (or non-stochastic). Then, as n→∞

- a) Yn
P−→ c

- b) Xn + Yn
d−→ X + c

- c) (k = 1) XnYn
d−→ cX and if c 6= 0, Xn/Yn

d−→ X/c.

- d) If (An)n≥0 are random matrices such that (An)ij
P−→ Aij, where A is determin-

istic (or non-stochastic), then AnXn
d−→ AX.

Proposition 2.4. If Xn
d−→ X as n → ∞, then (Xn)n≥0 is bounded in probability,

or Xn = OP (1), i.e.

∀ε > 0 ∃M(ε) <∞ such that for all n ≥ 0, P
(
‖Xn‖ > M(ε)

)
< ε .

Many estimators in statistics are based on, or related to, the mean of i.i.d. ran-
dom variables. A very important result regarding their convergence is the law of large
numbers. in its most simple form, it can be proved with elementary tools.

Proposition 2.5 (Weak law of large numbers). Let X1, . . . , Xn be i.i.d. copies of
X with Var(X) <∞. It holds that

X̄n =
1

n

n∑
i=1

Xi
P−→ E[X]

Proof. We apply Chebyshev’s inequality to the centered random variable of interest
Zn = 1

n

∑n
i=1(Xi − E[X])

P
(
|X̄n − E[X]| > ε

)
= P

(
| 1
n

n∑
i=1

(Xi − E[X])| > ε
)
≤ Var(Zn)

ε2
.

By independence of the Xi, the variance of Zn satisfies Var(Zn) = Var(X)/n. As a
consequence

P
(
|X̄n − E[X]| > ε

)
≤ Var(X)

ε2

1

n
→ 0 .

1
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The strong law of large numbers requires less assumptions on X, and states a stronger
convergence (almost sure). It is admitted here.

Theorem 2.1 (Strong law of large numbers). Let X1, . . . , Xn be i.i.d. copies of
X ∼ P on Rk and assume E[‖X‖] <∞. We have as n→∞

1

n

n∑
i=1

Xi
a.s.−−→ E[X] .

2.2. Law of large numbers and Central limit theorem.
In the previous lecture, we recalled that the average X̄n of n i.i.d copies of X converges

almost surely to the mean E[X].The stochastic fluctuations of X̄n around E[X] are of
order 1/

√
n and look normally distributed whenever Var(X) = σ2 <∞.

Theorem 2.2 (Central limit theorem). Let X1, . . . , Xn be i.i.d. copies of X ∼ P
on R and assume Var(X) = σ2 <∞. We have as n→∞

√
n
( 1

n

n∑
i=1

Xi − E[X]
)

d−→ N (0, σ2) .

To give a multidimensional version, we recall the following

Definition 2.3. A random variable X ∈ Rk has a normal distribution with mean
µ ∈ Rk and k × k covariance matrix Σ, denoted by X ∼ N (µ,Σ), if

- Its probability density function is

f(x) =
1

(2π)k/2
1

| det(Σ)|1/2
exp

(
− 1

2
(x− µ)>Σ−1(x− µ)

)
.

- It is the unique random variable such that for all linear forms α>X ∼ N (α>µ, α>Σα),
a valid definition for singular Σ.

The following basic facts are recalled

Proposition 2.6. - For A a d× k matrix and b ∈ Rd

AX + b ∼ N (Aµ+ b, AΣA>) .

- If An
P−→ A are random matrices and Xn

d−→ N (µ,Σ), then AnXn
d−→ N (Aµ,AΣA>).

- If Σ is diagonal, all the coefficients X(j) are independent.

The multivariate version of the central limit theorem is
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Theorem 2.3. Let X1, . . . , Xn be i.i.d. copies from X ∼ P on Rk with Cov(X) = Σ
positive definite. We have as n→∞

√
n
( 1

n

n∑
i=1

Xi − E[X]
)

d−→ N (0,Σ) .

As a consequence of Proposition 2.1, we can bound in probability the deviations

Corollary 2.1. Under the conditions of Theorem 2.3, we have

1

n

n∑
i=1

Xi − E[X] = OP (1/
√
n) .

In light of these results, a reasonable optimality criterion for estimators is hence
asymptotic efficiency.

nVarθ0(θ̃)→ I−1(θ0), when n→∞ and sampling from Pθ0 .

Indeed, the Cramèr-Rao lower bound hints at the fact that this is the smallest variance
that can be asymptotically achieved. In this section, we show that the maximum likeli-
hood estimator (MLE) is asymptotically efficient. In fact, under suitable assumptions,

θ̂MLE ≈ N
(
θ, I−1(θ0)/n

)
,

for any θ0 ∈ Θ. This implies efficiency, but is also useful to for inference; the construction
of confidence regions.

Example 2.1 (Confidence interval). Let X1, . . . be a sequence of i.i.d copies of
X ∼ P , real-valued random variable with mean µ0 and variance σ2. For α ∈ (0, 1), we
define the confidence region

Cn =
{
µ ∈ R : |µ− X̄| ≤ σzα√

n

}
where α is taken such that P(|Z| ≤ zα) = 1− α, for Z ∼ N (0, 1). To show that Cn is a
good confidence region, we compute the probability that µ0 belongs to it

P(µ0 ∈ Cn) = P(|X̄n − µ0| ≤
σzα√
n

)

= P(| 1
n

n∑
i=1

Xi − µ
σ
| ≤ zα√

n
)

= P(
√
n| 1
n

n∑
i=1

X̃i − E[X̃]| ≤ zα)

→ P(|Z| ≤ zα) = α .

by central limit theorem and continuous mapping theorem. As a consequence, Cn is an
asymptotic level 1 − α confidence set. When σ is unknown, it can be replaced by an
estimate of it (see Example sheet).
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Remark (Discussion). This example shows that to estimate the mean of a distri-
bution, the empirical average X̄n of the observations is a suitable estimator. Indeed,
the law of large numbers shows that it converges to the true value E[X] = µ0. It is also
possible to describe the variations of X̄n around its limit, with the central limit theorem,
which is useful for inference. In the following lectures, we will show how the same tools
can be used to prove similar properties for the maximum likelihood estimator, under
some assumptions on the parametric model.
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Lecture 6: Consistency of the MLE
Lecturer: Quentin Berthet

2.3. Consistency of the MLE.

Definition 2.4 (Consistency). Consider X1, . . . , Xn i.i.d. arising from the para-
metric model {Pθ : θ ∈ Θ}. An estimator θ̃n = θ̃n(X1, . . . , Xn) is called consistent if
θ̃n → θ0 in probability for n→∞, whenever the Xi are drawn from Pθ0 .

Remark. We often write simply θ̃n
Pθ−→ θ.

Under some regularity assumptions on the model, we show here that the maximum
likelihood estimator θ̂MLE is unique and consistent. For the version of the theorem
shown here, we use the following set of assumptions

Assumption 2.1 (Regularity for consistency). Let {f(·, θ) : θ ∈ Θ} be a statistical
model of p.d.f./p.m.f. on X ⊆ Rd such that

1. f(x, θ) > 0 for all x ∈ X , θ ∈ Θ.

2.
∫
X f(x, θ)dx = 1 for all θ ∈ Θ.

3. The function f(x, ·) : θ 7→ f(x, θ) is continuous for all x ∈ X .

4. Θ ⊆ Rp is compact.

5. For any θ, θ′ ∈ Θ, f(·, θ) = f(·, θ′)⇒ θ = θ′.

6. Eθ supθ′ | log f(X, θ)| <∞.

Remark. - Assumptions 1., 2., 5., and 6. guarantee that we can apply the strict
version of Jensen’s inequality (see reference), so that θ0 is the unique maximum
of the function ` defined by `(θ) = Eθ0 log f(X, θ).

- With these hypotheses (particularly 6.), we have that the continuity of the func-
tion θ 7→ log f(x, θ) carries over to continuity of θ 7→ Eθ0 log f(X, θ). This is
known as the dominated convergence theorem, studied in details in the course
Probability and Measure.
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2 6: Consistency of the MLE

- These subtleties are included in the spirit of rigor and exhaustiveness, so that the
interested reader can connect this result to other courses. However, they are not
the main focus of this course, and these assumptions are not examinable. They
are often referred to in the lecture notes, as well as in examination questions as
usual regularity assumptions.

Theorem 2.4 (Consistency of the MLE). Let X1, . . . , Xn be i.i.d from the model
{f(·, θ) : θ ∈ Θ} satisfying Assumption 2.1. Then, an MLE exists and any MLE is
consistent.

Proof of existence. The mapping θ 7→ ¯̀
n(θ) = 1

n

∑n
i=1 log f(Xi, θ) is continuous

on the compact set Θ. As a consequence, a maximizer exists, so an MLE is well-defined

The idea behind the proof of consistency is that for all θ, ¯̀
n(θ) converges to `(θ) in

probability, by the law of large numbers since

1

n

n∑
i=1

log f(Xi, θ)→ Eθ0 [log f(X, θ)] .

As a consequence, we expect θ̂n to converge to θ0, the maximizer of `(θ). While this
intuition is false in general, it holds under a stronger fact: the uniform convergence of
¯̀
n to `. Under Assumption 2.1, we have as n→∞

sup
θ∈Θ
|¯̀n(θ)− `(θ)| P−→ 0 ,

a uniform law of large numbers. We assume for now this result, used in the following
proof.

Proof of consistency. Define Θε = {θ ∈ Θ : ‖θ − θ0‖ ≥ ε} for arbitrary ε > 0.
Note that Θε is compact as intersection of Θ with a closed set. The function ` is
continuous on Θε, therefore it attains its maximum on it, so there exists θε such that

`(θε) = sup
θ∈Θε

= c(ε) < `(θ0) ,

as θ0 is the unique maximum of ` on Θ. There therefore exists δ(ε) > 0 such that
c(ε) + δ(ε) < `(θ0)− δ(ε). By the triangle inequality, we have

sup
θ∈Θε

¯̀
n(θ) = sup

θ∈Θε

[
¯̀
n(θ)− `(θ) + `(θ)

]
≤ sup

θ∈Θε

`(θ) + sup
θ∈Θ
|¯̀n(θ)− `(θ)| .

We consider the sequence of events

An(ε) =
{

sup
θ∈Θ
|¯̀n(θ)− `(θ)| < δ(ε)

}
.
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On these events, the following sequence of inequalities hold

sup
θ∈Θε

¯̀
n(θ) ≤ c(ε) + δ(ε) < `(θ0)− δ(ε) ,

the last inequality holding by definiton of δ(ε). On An(ε), we also have that `(θ0) −
¯̀
n(θ0) ≤ δ(ε), leading to

sup
θ∈Θε

¯̀
n(θ) ≤ ¯̀

n(θ0)

As a consequence, on An(ε), θ̂n cannot lie in Θε, as this would lead to the contradiction
¯̀
n(θ̂n) < ¯̀

n(θ0). As a consequence, we have that An(ε) ⊆ {‖θ̂n − θ0‖ < ε}. Since
P(An(ε))→ 1 as n→∞ by the uniform LLN, we have that

P(‖θ̂n − θ0‖ < ε)→ 1 .

Remark. This proof can be simplified under additional properties of the likelihood
function, such as differentiability (see Example sheet). This can be useful in situations
where Θ is not compact, as this assumption is then no longer required.
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Lecture 7: Asymptotic normality of the MLE
Lecturer: Quentin Berthet

Digression: the uniform law of large numbers. As hinted in the previous lecture, one
of the important notions in statistics is the uniform convergence of a class of variables
to some limits: It is not sufficient that for all θ ∈ Θ, the sequence ¯̀

n(θ) converges to
`(θ) almost surely, we use the stronger fact that

sup
θ∈Θ
|¯̀n(θ)− Eθ0 [`n(θ)]︸ ︷︷ ︸

`(θ)

| a.s.−−→ 0 .

Written in this form, it can be understood as a uniform law of large numbers.

Observation (Finite case). Let X1, . . . , Xn be i.i.d. in X ⊆ Rd and h : X → R a
function. The variables h(Xi) are also i.i.d., so if E|h(X)| <∞ then by the strong law
of large numbers

1

n

n∑
i=1

h(Xi)− E[h(X)]
a.s.−−→ 0 .

If h1, . . . , hM is a finite class of such functions, this applies for each 1 ≤ j ≤M and we
have on events Aj such that P(Acj) = 0,

1

n

n∑
i=1

hj(Xi)− E[hj(X)]→ 0 .

Note that this is a simple convergence in the reals: implicitly it means that for all
ω ∈ Aj, the display above holds for Xi(ω). Hence, on A = ∩Mj=1Aj, we have that

(†) max
1≤j≤M

∣∣∣ 1
n

n∑
i=1

hj(Xi)− E[hj(X)]
∣∣∣→ 0 .

Furthermore, we have that

P(Ac) = P(∪Mj=1A
c
j) ≤

M∑
j=1

P(Aj) = 0 ,

so that (†) holds almost surely. Therefore, the uniform law of large number holds in
the finite case. In order to extend this result to an infinite class of functions, as needed
here for all the variables log f(Xi, θ) indexed over θ ∈ Θ (instead of 1 ≤ j ≤ M), we
use the continuous “analogue” to finiteness: compactness.
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2 7: Asymptotic normality of the MLE

Theorem 2.5 (Uniform law of large numbers). Let Θ be a compact set in Rp and
q : X × Θ → R be continuous in θ for all x such that E[supθ∈Θ |q(X, θ)|] < ∞. Then,
as n→∞, we have

sup
θ∈Θ

∣∣∣ 1
n

n∑
i=1

q(Xi, θ)− E[q(X, θ)]
∣∣∣ a.s−→ 0 .

The idea of the proof is to transfer the result over a finite set Θ′ - as shown in the
observation - to an infinite, but compact, set Θ. By compactness, the set Θ can be
covered by a finite subset Θ′, up to any fixed precision δ > 0. By continuity in θ, the
uniform convergence over Θ′ implies uniform convergence over Θ: any θ ∈ Θ is δ-close
to some θ ∈ Θ′, so q(X, θ) is close to q(X, θ′).

2.4. Asymptotic normality of the MLE. The maximum likelihood estimator θ̂MLE

therefore converges in probability to the true value of the parameter θ0, i.e. the MLE
is consistent. This is based on the property that θ̂MLE and θ0 maximize, respectively,
¯̀
n and `. It is possible to quantify this maximization, by studying the behavior of the

gradient and the Hessian of these functions about their maximizers, in order to obtain
a finer understanding of the convergence of θ̂MLE − θ0.

Assumption 2.2. Let {f(·, θ) : θ ∈ Θ} be a statistical model of p.d.f./p.m.f. on
X ⊆ Rd such that in addition to those of Assumption 2.1 (which ensure consistency)
we have

1. The true θ0 belongs to the interior of Θ.

2. There exists U ⊆ Θ open containing θ0 such that the function

θ 7→ f(x, θ)

is for every x ∈ X , twice continuously differentiable with respect to θ ∈ U .

3. The p × p Fisher information matrix I(θ0) is non-singular and we have that
Eθ0 [‖∇θ log f(X, θ0)‖] <∞.

4. There exists a compact ball K in U of non-empty interior that is centered at θ0

such that

Eθ0 sup
θ∈K
‖∇2

θ log f(X, θ)‖ <∞∫
X

sup
θ∈K
‖∇θ log f(X, θ)‖dx <∞∫

X
sup
θ∈K
‖∇2

θ log f(X, θ)‖dx <∞ .
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Remark. We note once again that these are included to give a rigorous statement,
so that the interested reader can connect this result to other courses. However, they
are not the main focus of this course, and these assumptions are not examinable. They
are often referred to in the lecture notes, as well as in examination questions as usual
regularity assumptions.

Theorem 2.6. Let the statistical model {f(·, θ) : θ ∈ Θ} satisfy the properties
of Assumption 2.2, and θ̂n be the MLE based on n i.i.d observations X1, . . . , Xn with
distribution Pθ0. We have, as n→∞

√
n(θ̂n − θ0)

d.−→ N (0, I(θ0)−1) .

Proof. On events of probability going to 1, θ̂n belongs to the interior of Θ, since θ̂n
converges in probability to θ0, contained in the interior. On these events, we have by the
regularity assumptions that ∇θ

¯̀
n(θ̂n) = 0, by first-order condition on the maximum.

By regularity of θ 7→ ∇¯̀
n(θ) and applying the mean value theorem on each coordinate

between θ0 and θ̂n, we have

0 = ∇θ
¯̀
n(θ̂n) = ∇θ

¯̀
n(θ0) + Ān︸︷︷︸

≈∇2
θ

¯̀
n(θ0)

(θ̂n − θ0) ,

where Ān is defined, coefficient-wise by(
Ān
)
ij

=
∂2

∂θi∂θj
¯̀
n(θ̄(j)) , for θ(j) ∈ [θ0, θ̂n].

Assuming that Ān converges in probability to Eθ0 [∇2
θ
¯̀
n(θ0)] = −I(θ0), this yields that

√
n(θ̂n − θ0) = (−Ā−1

n )︸ ︷︷ ︸
Pθ0−−→I(θ0)−1

√
n∇θ

¯̀
n(θ0) .

Furthermore, by definition of ¯̀
n and X, we have

√
n∇θ

¯̀
n(θ0) =

1√
n

n∑
i=1

(
∇θ log f(Xi, θ)− Eθ0 [∇θ log f(X, θ)]︸ ︷︷ ︸

=0

)
As a consequence, we have by the central limit theorem that

√
n∇θ

¯̀
n(θ0)

d−→ N
(
0,Covθ0(∇θ log f(X, θ))︸ ︷︷ ︸

I(θ0)

)
Therefore, by convergence of Ā−1

n to −I(θ0)−1, this yields by Slutsky’s lemma that

√
n(θ̂n − θ0)

d−→ N (0, I(θ0)−1I(θ0)I(θ0)−1︸ ︷︷ ︸
I(θ0)−1

)
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Proof of convergence of Ān (not examinable)

We have, for every entry of Ān

(Ān)kj =
1

n

n∑
i=1

(
∂2

∂θk∂θj
log f(Xi, θ

(j))− Eθ0

[ ∂2

∂θk∂θj
log f(Xi, θ

(j))
])

+ Eθ0

[ ∂2

∂θk∂θj
log f(Xi, θ

(j))
]
− Eθ0

[ ∂2

∂θk∂θj
log f(Xi, θ0)

]
+ (−I(θ0))kj .

writing q(x, θ) = ∂2

∂θk∂θj
log f(x, θ), we note that the regularity assumptions imply con-

tinuity of q(x, θ) and Eθ0 [q(X, θ)] for all x ∈ X . We can therefore conclude that the
first line of the above display can be upper bounded by

sup
θ∈K

∣∣∣ 1
n

n∑
i=1

q(Xi, θ)− Eθ0 [q(X, θ)]
∣∣∣ Pθ0−−→ 0 ,

by the uniform law of large numbers, whose assumptions are verified. The second line
of the display can also be upper bounded by

|Eθ0 [q(X, θ
(j))]− Eθ0 [q(X, θ0)|

Pθ0−−→ 0 ,

since θ(j)
Pθ0−−→ θ0 by consistency of θ̂n and the continuous mapping theorem. This yields

the desired result.
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Lecture 8: Discussion of asymptotic normality
Lecturer: Quentin Berthet

Definition 2.5 (Asymptotic efficency). In a parametric model {f(·, θ) : θ ∈ Θ},
a consistent estimator θ̃n is called asymptotically efficient if nVarθ0(θ̃n) → I(θ0)−1 for
all θ ∈ int(Θ) for p = 1, or nCovθ0(θ̃n)→ I(θ0)−1 in Rp×p.

Remark. In reference to the result and assumptions of Theorem 2.6, we make the
following remarks

- At the expense of more sophisticated proofs, one can reduce the regularity as-
sumptions required of the function θ 7→ f(x, θ). This allows in particular to cover
the case of Laplace distributions.

- Some notion of regularity is however required, as shown in the example of the
uniform distribution over [0, θ], whose density f(x, θ) = 1

θ
1[0,θ](x) produces a dis-

continuous likelihood function (see Example sheet).

- For θ0 at the boundary of the parameter space Θ, the asymptotics need not be
normal. For instance, in the model of N (θ, 1) for θ ∈ [0,∞), the case θ0 = 0 is a
counter-example (see Example sheet).

- This result confirms the intuition given by the Cramèr-Rao lower bound that the
“optimal” variance for an estimator is given by I−1(θ0). The lower bound holds
only for unbiased estimators, and giving a rigorous theory of asymptotic efficiency
requires more precision, as shown by the Hodge estimator, obtained from an esti-
mator θ̂n over R with asymptotic normality, and by setting θ̃n = θ̂n if |θ̂n| > n−1/4,
and 0 otherwise (see Example sheet).

- Later in the course, we will consider several criteria to compare estimators, in-
cluding the worst performance for all values of the “true value” θ0, which will
shed some light on these apparent paradoxes.
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2 8: Discussion of asymptotic normality

2.5. Plug-in MLE and Delta method. It is often practical to think of estimation
problems in the following way: for a parametric model {f(·, θ) : θ ∈ Θ}, we consider
the estimation of Φ(θ), for a functional Φ : Θ → Rk and Θ ⊆ Rp. We first consider a
special case, and introduce the following definition

Definition 2.6. For Θ = Θ1×Θ2, and θ = (θ1, θ2)>, we define the profile likelihood,
for φ(θ) = θ1, by

L(p)(θ1) = sup
θ2∈Θ2

L((θ1, θ2)>) .

Remark. Note that maximizing the profile likelihood in θ1 is equivalent to maxi-
mizing the likelihood in θ, and to take the first argument of the maximizer.

More generally, one shows that a MLE in the new parametrization in φ, given by
{f(·, φ) : φ = Φ(θ) for some θ ∈ Θ} is obtained by taking Φ(θ̂MLE). (see Examples
sheet)

Definition 2.7. For a statistical model {f(·, θ) : θ ∈ Θ} and Φ : Θ → Rk, the
plug-in MLE of Φ(θ0) is the estimator Φ(θ̂MLE).

Using the known limiting distribution of an estimator to find the limiting distribution
of another estimator, function of the initial one, is known as the Delta method.

Theorem 2.7 (Delta method). Let Φ : Θ → R be continuously differentiable at
θ0 with gradient satisfying ∇θΦ(θ0) 6= 0. Let θ̂n be a sequence of random variables

(estimator) such that
√
n(θ̂n− θ0)

d.−→ Z, where Z is a random variable in Rp. We have
that √

n
(
Φ(θ̂n)− Φ(θ0)

) d.−→ ∇θΦ(θ0)>Z .

Proof. We have, by definition of differentiability, for some θ̃n in the segment [θ0, θ̂n]
√
n
(
Φ(θ̂n)− Φ(θ0)

)
= ∇θΦ(θ̃n)>

√
n (θ̂n − θ0)

Since
√
n(θ̂n − θ0)

d−→ Z, it is bounded in probability and ‖θ̂n − θ0‖ = OP (1/
√
n) and

θn
P−→ θ0, so θ̃n

P−→ θ0 and by the continuous mapping theorem, ∇θΦ(θ̃n)
P−→ ∇θΦ(θ0).

The desired result is therefore a direct consequence of Slutsky’s lemma.

Remark. This result is given in this form as it will be usually applied to estimators
with deviations of order 1/

√
n.

- It can be generalized to other estimators, taking a sequence rn →∞ instead of
√
n.

- Note that in the case where θ̂n is a maximum likelihood with asymptotic normality
(as in Theorem 2.6), this implies

√
n
(
Φ(θ̂n)− Φ(θ0)

) d.−→ N (0,∇θΦ(θ0)>I−1(θ0)∇θΦ(θ0)) .
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In dimension 1, this yields

√
n
(
Φ(θ̂n)− Φ(θ0)

) d.−→ N (0,Φ′(θ0)2I−1(θ0)) .

- This shows that the plug-in MLE is asymptotically efficient, as its limiting co-
variance matrix matches that of the Cramèr-Rao lower bound

lim
n→∞

nVarθ0(Φ(θ̂n)) = ∇θΦ(θ0)>I−1(θ0)∇θΦ(θ0) .
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Lecture 9: Asymptotic inference with the MLE
Lecturer: Quentin Berthet

2.6. Asymptotic inference with the MLE. In the discussion on confidence intervals
in Example 2.1, we are interested in estimating the mean of a random variable, and to
construct confidence intervals, based on the central limit theorem. It is possible to do
the same thing in general, for any coefficient θj of a parameter θ. Indeed, considering

ej the j-th vector of the canonical basis, we have for the MLE θ̂n, under regularity
assumptions

√
n(θ̂n,j − θ0,j) = e>j

√
n(θ̂n − θ0)

d.−→ N (0, e>j I(θ0)−1ej︸ ︷︷ ︸
(I−1(θ0))jj

) .

Using the same logic as in Example 2.1, we can therefore consider

Cn =
{
ν ∈ R : |ν − θ̂nj| ≤ (I−1(θ0))

1/2
jj zα/

√
n
}
,

for zα such that P (|Z| ≤ zα) = 1 − α, and Z ∼ N (0, 1). We compute the limit of the
probability that θ0,j is in the confidence interval Cn

Pθ0(θ0,j ∈ Cn) = Pθ0(
√
n(I−1(θ0))

−1/2
jj |θ̂n,j − θ0,j| ≤ zα)→ 1− α .

by limiting distribution of
√
n(θ̂n,j − θ0,j) and continuous mapping theorem.

Remark. We note that in order to construct the confidence interval given here,
one must know the Fisher information I(θ0), or at least its j-th diagonal coefficient. In
general, this quantity depends on θ0 and it is unreasonable to assume that it is known.
In the example related to the mean, we saw that it was possible to replace it by an
estimate. For the general case, it is therefore useful to introduce the following notion

Definition 2.8. We define the observed Fisher information as the p× p matrix

in(θ) =
1

n

n∑
i=1

∇θ log f(Xi, θ)∇θ log f(Xi, θ)
> .

It is common to use în = in(θ̂MLE) as an estimator of I(θ0), as in the following
proposition
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2 9: Asymptotic inference with the MLE

Proposition 2.7. Under the assumptions of Theorem 2.6, we have as n → ∞,

that în
Pθ0−−→ I(θ0)

Proof. We have, for all θ ∈ Θ, noting q(X, θ) = ∇θ log f(X, θ)>∇θ log f(X, θ), that

in(θ) =
1

n

n∑
i=1

q(Xi, θ) , and I(θ) = Eθ0 [q(X, θ)] .

We therefore have

în − I(θ0) =
[
in(θ̂MLE)− I(θ̂MLE)

]
+
[
I(θ̂MLE)− I(θ0)

]
.

The first term is upper bounded as

∣∣in(θ̂MLE)− I(θ̂MLE)
∣∣ ≤ sup

θ∈Θ

∣∣∣ 1
n

n∑
i=1

q(Xi, θ)− Eθ0 [q(X, θ)]
∣∣∣ Pθ0−−→ 0 ,

The second term converges in probability to 0, by consistency of θ̂MLE and by the
continuous mapping theorem.

Remark. It is also possible to use ĵn = jn(θ̂MLE), where

jn(θ) = − 1

n

n∑
i=1

∇2
θ log f(Xiθ) .

This is also a consistant estimator of I(θ0), with a similar proof.

Definition 2.9 (Wald statistic). For all θ ∈ Θ, we define the Wald statistic as

Wn(θ) = n(θ̂MLE − θ)>în(θ̂MLE − θ) .

This is a quadratic form, with a semidefinite positive în, its level sets are ellipsoids
that can be used to construct confidence regions.

Proposition 2.8 (Confidence ellipsoids). Under the same assumptions, the confi-
dence region Cn defined by

Cn =
{
θ : Wn(θ) ≤ ξα

}
,

for ξα satisfying P(χ2
p ≤ ξα) = 1− α, is an α-level asymptotic confidence region.

Proof. We compute P(θ0 ∈ Cn) = P(Wn(θ0) ≤ ξα), using that under these as-

sumptions,
√
n(θ̂n− θ0)

d.−→ N (0, I(θ0)−1) and în
Pθ0−−→ I(θ0). We decompose the statistic

Wn(θ0) as

Wn(θ) =
√
n(θ̂n − θ0)>I(θ0)

√
n(θ̂n − θ0) +

√
n(θ̂n − θ0)>(̂in − I(θ0))

√
n(θ̂n − θ0)
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By continuous mapping theorem, the first term converges in distribution to U>U =
U2

1 + . . . + U2
p with U ∼ N (0, Ip). As a sum of squares of p standard centered normal

variables, it has distribution χ2
p. The second term is a product of

√
n(θ̂n−θ0)>(̂in−I(θ0)),

converging to 0 in distribution (hence also in probability) by Slutsky’s lemma, and
of
√
n(θ̂n − θ0). As such, the second term also converges to 0 in distribution by a

second application of Slutsky’s lemma, while a third application (on sums) yields that

Wn(θ0)
d.−→ χ2

p, giving the desired result.

This statistic can therefore also be used to design a test for the hypothesis testing
problem H0 : θ = θ0 against H1 : θ ∈ Θ \ {θ0}, since P(Wn(θ0) > ξα)→ α.
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This method can be generalized to the hypothesis testing problem H0 : θ ∈ Θ0

against H1 : θ ∈ Θ \ Θ0, for Θ0 ⊆ Θ ⊆ Rp. For these types of problem, the objective
of a decision rule ψn - a function of the sample taking values in {0, 1} - is to output 0
with high probability under H0 and 1 under H1. In order to measure its performance,
we consider the

- type-one error (false positive): Pθ(ψn = 1︸ ︷︷ ︸
reject H0

) = Eθ[ψn] , θ ∈ Θ0.

- type-two error (false negative): Pθ(ψn = 0︸ ︷︷ ︸
accept H0

) = Eθ[1− ψn] , θ ∈ Θ1.

Definition 2.10 (Likelihood ratio test). We define the likelihood-ratio statistic as

Λn(Θ,Θ0) = 2 log
supθ∈Θ

∏n
i=1 f(Xi, θ)

supθ∈Θ0

∏n
i=1 f(Xi, θ)

= 2 log

∏n
i=1 f(Xi, θ̂MLE)∏n
i=1 f(Xi, θ̂MLE,0)

,

where θ̂MLE,0 is the maximum likelihood estimator restricted to the set Θ0.

Theorem 2.8 (Wilks theorem). Let {f(·, θ) : θ ∈ Θ} be a statistical model satisfy-
ing Assumptions 2.2, and a hypothesis testing problem where Θ0 = {θ0}, for some fixed
θ0 ∈ int(Θ). We have, as n→∞

Λn(Θ,Θ0)
d.−→ χ2

p .

Proof. Considering events where θ̂n ∈ int(Θ), we have by definition of the likelihood
ratio

Λn(Θ,Θ0) = 2`n(θ̂n)− 2`n(θ0)

= −(−2`n(θ0))− (−2`n(θ̂n))

= −2∇θ`n(θ̂n)>︸ ︷︷ ︸
=0

(θ0 − θ̂n) +
√
n(θ0 − θ̂n)>B̄n

√
n(θ0 − θ̂n) ,

where B̄n is defined coefficient-wise, by Taylor approximation with remainder as(
B̄n

)
ij

=
∂2

∂θi∂θj
¯̀
n(θ̄) , for θ̄ ∈ [θ0, θ̂n].
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2 10: Introduction to Bayesian statistics

As in the proof of Theorem 2.6 and similarly to Proposition 2.7, we have that Bn

converges to I(θ0) so the last term converges in distribution to a χ2
p.

Remark. This result gives another statistic with asymptotic distribution χ2
p.

- The test ψn = 1{Λn(Θ,Θ0) ≥ ξα} controls the type-one error at asymptotic level
1− α.

- When Θ0 has dimension p0 < p, we have under the same assumptions that the
statistic converges in distribution to a χ2

p−p0

3. Bayesian inference. For a given parametric model {f(·, θ) : θ ∈ Θ}, there
are many situations where it is convenient to consider θ as a random variable with
distribution π on Θ. This can be motivated by some intrinsic randomness in the data
generating process, can represent subjective beliefs or side information about the true
value θ0, or can be a methodological practice to construct statistical decision rules.

Example 3.1. Consider a finite parameter space Θ = {θ1, . . . , θk} and possible
hypotheses Hi : θ = θi for 1 ≤ i ≤ k, with prior beliefs πi = P(Hi). If the true
hypothesis is Hi, the distribution of the observation X is fi(x), i.e.

P(X = x |Hi) = fi(x) .

By Bayes rule, when observing X = x, we have

P(Hi |X = x) =
P(X = x and Hi)

P(X = x)
=

πifi(x)∑
j πjfj(x)

.

We will prefer Hi over Hj given this observation if

P(Hi |X = x)

P(Hj |X = x)
=
fi(x)

fj(x)

πi
πj
≥ 1 .

If all the πi are equal, this will be driven only by the likelihood ratio fi(x)/fj(x).
Otherwise, the priors give a way to update this rule, according to the prior knowledge
or information given by π.

3.1. Basic ideas, prior and posterior. In a statistical model {f(·, θ) : θ ∈ Θ}, we
say that the law of X given θ is X | θ ∼ f(x, θ). The posterior distribution is defined as
the law of θ |X.

Definition 3.1. For a sample space X where the observation X takes values, we
consider the product space X ×Θ and a probability measure Q with p.d.f./p.m.f.

Q(x, θ) = f(x, θ)π(θ)
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The distribution π is the prior distribution of θ. As expected, it has conditional proba-
bility

X | θ ∼ f(x, θ)π(θ)∫
X f(x′, θ)π(θ)dx′

= f(x, θ) ,

with a sum for a p.m.f. The posterior distribution is defined as

θ |X ∼ f(x, θ)π(θ)∫
Θ
f(x, θ′)π(θ′)dθ′

= Π(θ|X) .

If X = (X1, . . . , Xn)>, all i.i.d. copies of law f(x, θ), then

θ |X1, . . . , Xn ∼
∏n

i=1 f(Xi, θ)π(θ)∫
Θ

∏n
i=1 f(Xi, θ′)π(θ′)dθ′

= Π(θ|X1, . . . , Xn) .
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As seen in the previous lecture, in a statistical model {f(·, θ) : θ ∈ Θ} with prior
distribution π(θ), the posterior distribution is defined as

θ |X ∼ f(x, θ)π(θ)∫
Θ
f(x, θ′)π(θ′)dθ′

= Π(θ|X) .

In the case where X = (X1, . . . , Xn)>, for Xi i.i.d. copies of law f(x, θ), then

θ |X1, . . . , Xn ∼
∏n

i=1 f(Xi, θ)π(θ)∫
Θ

∏n
i=1 f(Xi, θ′)π(θ′)dθ′

= Π(θ|X1, . . . , Xn) .

Remark. The posterior distribution given n i.i.d. observations is simply a reweighted
(and renormalized) version of the likelihood function. Note also that the denominator is
a normalizing constant: it does not describe the dependency of θ of this distribution. In
practice it can therefore be ignored in computations, as seen in the following example.

Example 3.2. Let X | θ ∼ N (θ, 1) with prior θ ∼ N (0, 1). The numerator of the
posterior distribution, as a function of θ is therefore proportional to

e−
θ2

2

n∏
i=1

exp
(
− (Xi − θ)2

2

)
∝ exp

(
− nθX̄ − nθ2

2
− θ2

2

)
∝ exp

(
− nθX̄ − (n+ 1)θ2

2

)
∝ exp

(
− (θ
√
n+ 1− nX̄/

√
n+ 1)2

2

)
∝ exp

(
− (θ − nX̄/(n+ 1))2

2/(n+ 1)

)
Using that a distribution has normalization 1, the posterior distribution gives

θ |X1, . . . , Xn ∼ N
( 1

n+ 1

n∑
i=1

Xi,
1

n+ 1

)
The general case of N (θ, σ2) with prior N (µ, ν2) is given in Examples sheet.
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We remark that in this example, the posterior distribution (our belief about the
value of θ after observation of the data) is in the same class of distribution than the
prior distribution (our belief before observation). The distribution is still normal, the
parameters have been updated based on the Xi.

Definition 3.2. In a statistical model {f(·, θ) : θ ∈ Θ}, when the prior π(θ) and
Π(θ|X) belong to the same family of distributions, it is called a conjugate prior.

Example 3.3. Some of the following examples are covered in examples sheet

- Normal prior and normal sampling for a normal posterior distribution.
- Beta prior and binomial sampling for a Beta posterior distribution.
- Gamma prior and Poisson sampling for Gamma posterior.

Note that the definition of the posterior distribution can be extended to the case
when π is not a probability distribution, i.e. does not integrate to 1. This is obvious
when the integral of π(θ) over Θ is finite, as a simple renormalization will yield a proper
prior without affecting the posterior distribution. More generally, it is only required that
f(X, θ)π(θ) has a finite integral over Θ.

Definition 3.3. A prior nonnegative function with infinite integral over Θ is called
an improper prior.

This can be very useful in order to build a prior that is as uninformative as possible,
by example by taking π(θ) = 1, not assigning more weight to some values of θ than
others. The following way allows to build a prior that is invariant to reparametrization.

Definition 3.4. The prior π(θ) proportional to
√

det(I(θ)) is called the Jeffreys
prior.

Example 3.4. In a N (µ, τ) model with θ = (µ, τ)> ∈ R × (0,∞), the Fisher
information matrix is equal to

I(θ) = I(µ, τ) =

(
1
τ

0
0 1

2τ2

)
.

As a consequence, the Jeffreys prior is given by π(µ, τ) ∝ 1/τ 3/2, which is constant in
µ. In this case, the posterior marginal distribution for µ is N (X̄n, τ/n).

3.2. Statistical inference with the posterior distribution. The posterior distribution
Π(· |X1, . . . , Xn) is a random probability measure on the parameter space Θ. It can be
used to address several statistical questions about θ.

Definition 3.5. For a Bayesian model with posterior Π(· |X1, . . . , Xn)

- Estimation: We can take, as an estimator of θ, the posterior mean θ̄ defined as

θ̄(X1, . . . , Xn) = EΠ(θ|X1, . . . , Xn) .
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- Uncertainty Quantification: Any subset Cn ⊆ Θ such that

Π(Cn |X1, . . . , Xn) = 1− α ,

is level 1− α credible set for θ.

- Hypothesis Testing: As in the motivating example from the previous lecture,
the Bayes factor satisfies

P(X1, . . . , Xn |Θ0)

P(X1, . . . , Xn |Θ1)
=

∫
Θ0

∏n
i=1 f(Xi, θ)π(θ)dθ∫

Θ1

∏n
i=1 f(Xi, θ)π(θ)dθ

=
Π(Θ0 |X1, . . . , Xn)

Π(Θ1 |X1, . . . , Xn)
.

Note that for all of these tasks, there is in general no guarantee that the proposed
method will have a satisfactory performance. In Example 3.4, the posterior mean of
θ = (µ, τ) gives µ̄n = X̄n, which is also the MLE, while in the case of Example 3.2, it
is equal to n

n+1
X̄n. In both cases, we see that the posterior mean will converge to the

true value θ (i.e. the realization of the random variable), and that we know the limiting
distribution of its deviations around this value.
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3.3. Frequentist behavior of posterior distributions. The inference procedures based
on the posterior distribution, as described in the past lecture, can be analyzed from a

frequentist point of view, assuming that Xi
i.i.d.∼ f(x, θ0).

Example 3.5. Sampling X from N (θ, 1) where θ ∼ N (0, 1) gives, as seen in last
lecture

θ |X1, . . . , Xn ∼ N
( 1

n+ 1

n∑
i=1

Xi,
1

n+ 1

)
The posterior mean is given by θ̄n = EΠ[θ |X1, . . . , Xn] = 1

n+1

∑n
i=1 Xi = n

n+1
X̄n. It is

not exactly equal to the MLE θ̂n = X̄n, but it is very close. In particular we have under

the assumption Xi
i.i.d.∼ N (θ0, 1)

θ̄n =
n

n+ 1
θ̂n

Pθ0−−→ θ0 ,

by Slutsky’s lemma. We can also expect the deviations to be of the same order under

Xi
i.i.d.∼ N (θ0, 1) √

n(θ̄n − θ0) =
√
n(θ̄n − θ̂n) +

√
n(θ̂n − θ0) .

The second term satisfies
√
n(θ̂n − θ0)

d.−→ N (0, 1). Expanding the first term gives

√
n(θ̄n − θ̂n) =

√
n
( 1

n+ 1
− 1

n

) n∑
i=1

Xi = −
√
n

n+ 1

(
X̄n − θ0 + θ0

) Pθ0−−→ 0 ,

by Slutsky’s lemma. Applying it a second time yields that the sum of the two terms
converges in distribution to N (0, 1). One of the consequences is that θ̄n can replace θ̂n
as the “center” of confidence regions, i.e. we can use

Cn =
{
ν : |ν − θ̄n| ≤

I(θ0)−1/2zα√
n

}
,

in a one-dimensional model. Here I(θ0) = 1 does not depend on the true value of θ
so there is no issue with estimating it as well. However, in Bayesian analysis, infer-
ence is based not on the asymptotic distribution of an estimator, but on the posterior
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distributions, and are considered credible sets of the form

Cn =
{
ν : |ν − θ̂n| ≤

Rn√
n

}
or

{
ν : |ν − θ̄n| ≤

Rn√
n

}
,

taking Rn such that Π(Cn |X1, . . . , Xn) = 1 − α. Note that Rn is a random variable
depending on the observations Xi. In order to prove that credible sets of these type are
frequentists confidence sets, i.e. that Pθ0(θ0 ∈ Cn)→ 1−α, it is therefore important to
understand the behavior of Πn = Π(· |X1, . . . , Xn) as a random probability distribution.

The Bernstein–von Mises theorem states that the posterior distribution behaves, for
large n, like a normal distribution centered at an efficient estimator, such as the MLE
θ̂n.

Theorem 3.1 (Bernstein–von Mises). For a parametric model {f(·, θ) : θ ∈ Θ} of
Θ ⊆ R satisfying the regularity assumptions of Theorem 2.6, a prior with continuous
density π at θ0 with π(θ0) > 0, and the associated posterior Πn = Π(· |X1, . . . , Xn). Let
φn be the random distribution N (θ̂n, I(θ0)−1/n). We have as n→∞

‖Πn − φn‖TV =

∫
Θ

|Πn(θ)− φn(θ)|dθ a.s.−−→ 0 .

Remark. We recall that the setting adopted here is the following. Given observa-
tions x1, . . . , xn, the Bayesian formalism gives a posterior distribution for the parame-

ter θ. When the observations are Xi
i.i.d.∼ f(x, θ), the posterior is a random distribution.

The distribution φn is also random, and this result states that these two distributions
look increasingly alike when n→∞.

This implies that for any subset A ⊆ Θ, we have Πn(A)− φn(A)→ 0, almost surely.
As a consequence, for any credible set Cn, we have that φn(Cn)→ 1−α, which is helpful
in showing that they are frequentist confidence regions of level 1− α.

Proof beginning. Since Πn and φn are probability distributions, they integrate to
1, and we have ∫

Θ

(Πn(θ)− φn(θ))dθ = 1− 1 = 0 .

This means that the integral of the positive and negative parts of (Πn(θ)− φn(θ)) are
equal, so the integral of the absolute value is equal to twice the integral of the positive
part, i.e. ∫

Θ

|Πn(θ)− φn(θ)|dθ = 2

∫
Θ

(Πn(θ)− φn(θ))+dθ

= 2

∫
Θ

(φn(θ)− Πn(θ))+dθ

= 2

∫
Θ

(
1− Πn(θ)

φn(θ)

)+

φn(θ)dθ .
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Since the function x 7→ (1− x)+ is bounded by 1, if it can be shown that Πn(θ)/φn(θ)
converges almost surely to 1 for all θ ∈ Θ, the dominated convergence theorem (from
Probability and Measure) guarantees that the result holds. At this level, the result is
assumed, and special cases will be covered in Examples sheet.

Remark. While a full proof is beyond the scope of this course, some informal intu-
ition can be given to illustrate this result. Note that it does not in any case constitute a
formal proof, and explicit examples can be done by hand. Those in the Examples sheet
must be done rigorously.

We have that

Πn(θ) =
π(θ)

∏n
i=1 f(Xi, θ)

Zn
,

where Zn is a normalization factor independent of θ. The distribution of the variations
of V =

√
n(θ − θ̂n) have density Πn,V that satisfies

Πn,V (v) =
1√
n

Πn

(
θ̂n +

v√
n

)
As a consequence, taking logarithms yields

log Πn,V (v) = log Πn

(
θ̂n +

v√
n

)
+ log

1√
n

= log π
(
θ̂n +

v√
n

)
+ `n(θ̂n +

v√
n

)
− logZ ′n

≈ log π(θ0) + `n(θ̂n) + `′n(θ̂n)
v√
n

+
1

2
`′′n(θ̂n)

v2

n
− logZ ′n ≈ −

1

2
I(θ0)v2 − log Z̃n ,

with the approximation being valid for large n Note that under θ ∼ N (θ̂n, I(θ0)−1), we
have V ∼ N (0, I(θ0)−1) and

log φn,V = −1

2
I(θ0)v2 − logC(θ0) .

The main idea is based on the fact that a function of the form enf(θ) is exponentially
smaller than its maximum for all θ such that f(θ) < f(θ∗), where θ∗ maximizes f . If
the approximation

f(θ∗ + h) ≈ f(θ∗) +∇θf(θ∗) · h+
1

2
h>∇2

θf(θ∗)v ,

holds for small h, the optimality conditions ∇θf(θ∗) = 0 and ∇2
θf(θ∗) = −Q � 0 yield

for “constant x”

f(θ∗ +
x√
n

) ≈ f(θ∗)− 1

2n
x>Qx , and e

nf(θ∗+ x√
n

) ≈ enf(θ∗)e−
1
2
x>Qx .

This can be useful when computing integrals or approximating distributions, and is
known as Laplace’s method.
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Our objective is to show that credible sets of the form

Cn =
{
ν : |ν − θ̂n| ≤

Rn√
n

}
,

with Rn chosen such that Πn(Cn) = Π(Cn |X1, . . . , Xn) = 1 − α are also frequentist
confidence sets, i.e. that for Xi ∼ f(x, θ0), we have that Pθ0(θ0 ∈ Cn) → 1 − α when
n → ∞. The proof can be done in two parts, first by showing that if Rn converges
almost surely to its frequentist equivalent, this probability converges to 1− α, then by
showing that Rn converges indeed to this limit.

Definition 3.6. For all t > 0, we define the function Φ0 by

Φ0(t) = P(|Z0| ≤ t) =

∫ t

−t
ϕ0(x)dx ,

for Z0 ∼ N (0, I(θ0)−1). It is an increasing, continuous one-to-one mapping from [0,∞)
to [0, 1). Its well-defined functional inverse is also continuous and denoted by Φ−1

0 .

Lemma 3.1. Under the assumptions above, we have that Rn
a.s.−−→ Φ−1

0 (1 − α), as
n→∞.

Proof. We have

Φ0(Rn) =

∫ Rn

−Rn
ϕ0(v)dv

=

∫ θ̂n+Rn/
√
n

θ̂n−Rn/
√
n

φn(θ)dθ for v =
√
n(θ − θ̂n)

= φn(Cn)− Πn(Cn) + Πn(Cn)

By the Bernstein–von Mises theorem, the first difference converges to 0 almost surely,
and the second term is equal to 1−α. As a consequence, when n→∞, Φ0(Rn)

a.s.−−→ 1−α.
Applying the continuous mapping theorem with Φ−1

0 allows us to conclude.
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Theorem 3.2. Under the assumptions above, for α ∈ (0, 1) and n → ∞, we have
that Pθ0(θ0 ∈ Cn)→ 1− α.

Proof. By Slutsky’s lemma, given that Φ−1
0 (1− α) > 0, we have that

Φ−1
0 (1− α)

Rn

√
n(θ̂n − θ0)

d.−→ N (0, I(θ0)−1) .

As a consequence, we have that

Pθ0(θ0 ∈ Cn) = Pθ0(|θ̂n − θ0| ≤ Rn/
√
n)

= Pθ0

(Φ−1
0 (1− α)

Rn

√
n|θ̂n − θ0| ≤ Φ−1

0 (1− α)
)

→ P(|Z0| ≤ Φ−1
0 (1− α)) = Φ0(Φ−1

0 (1− α)) = 1− α .

Remark. A similar result holds with θ̄n (the posterior mean) instead of θ̂n (see
Examples sheet).

4. Decision theory. Given a statistical model {f(·, θ) : θ ∈ Θ} and an observa-
tion sample X ∈ X , we can phrase many statistical problems as decision problems, with
an action space A and decision rules

δ : X → A .

Example 4.1. Explicitly, for several statistical problems

- In a hypothesis testing problem, A = {0, 1} the decision δ(X) is a test.

- In an estimation problem, A = Θ and δ(X) = θ̂(X) is an estimation problem.

- In inference problems, A = “subsets of Θ” and δ(X) = C(X) is a confidence set.

The performance of a decision rule is assessed by a loss function, that determines the
value of a particular action, for a given θ.

L : A×Θ→ [0,∞) .

Example 4.2.
- In an hypothesis testing problem, the answer is right or wrong, and for θ ∈ {0, 1}

representing the index of the hypothesis, we can take

L(a, θ) = 1{a 6= θ} .

- In an estimation problem, we are concerned with the distance between our esti-
mate and the true value, so we can take the absolute error or the squared error

L(a, θ) = |a− θ| or |a− θ|2 .
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For any decision rule, we can consider the average loss under the distribution of X

Definition 4.1. For a loss function L, and a decision rule δ we have for X ∼ Pθ

R(δ, θ) = Eθ[L(δ(X), θ)] =

∫
X
L(δ(x), θ)f(x, θ)dx .

Example 4.3.
- In a hypothesis testing problem, R(δ, θ) = Eθ1{δ(X) 6= θ} = Pθ(δ(X) 6= θ) de-

scribes the probability of error (type I/II).

- In an estimation problem, the quadratic risk is the mean squared error (MSE)
equal to Eθ[(δ(X)− θ)2] = Eθ[(θ̂(X)− θ)2]

- For X ∼ Bin(n, θ) and θ ∈ [0, 1], we can take θ̂(X) = X/n

R(θ̂, θ) = Eθ[(θ̂(X)− θ)2] =
θ(1− θ)

n
,

If we had taken a naive estimator η(X) = 1/2, we would have

R(η̂, θ) = Eθ[(η̂(X)− θ)2] = (θ − 1/2)2 .

As shown in the example above, it is not possible in general to compare uniformly
the performance of two estimators: R(θ̂, ·) and R(η̂, ·) cannot be uniformly compared
in θ ∈ [0, 1].
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Lecture 14: Bayesian risk
Lecturer: Quentin Berthet

4.1. Bayes rule for risk minimization.

Definition 4.2. Given a prior π on Θ, the π-Bayes risk of δ for the loss function
L is defined as

Rπ(δ) = Eπ[R(δ, θ)] =

∫
Θ

R(δ, θ)π(θ)dθ =

∫
Θ

∫
X
L(δ(x), θ)π(θ)f(x, θ)dxdθ .

A π-Bayes decision rule δπ is any decision rule that minimizes Rπ(δ).

Example 4.4. In a binomial model X ∼ Bin(n, θ) with uniform prior on [0, 1] for
θ,we have for the quadratic loss R(X/n, θ) = θ(1− θ)/n

Rπ(X/n) = Eπ

[θ(1− θ)
n

]
=

1

n

∫ 1

0

θ(1− θ)dθ =
1

6n
.

Definition 4.3. For a Bayesian model, the posterior risk RΠ is defined as the
average loss under the posterior distribution for some observation x ∈ X .

RΠ(δ) = E[L(δ(x), θ)|x] .

Remark. We recall that the expectation is taken over θ here, not over the ob-
servation X. In the binomial model, with a quadratic loss, we have for any estimator
δ(X)

RΠ(δ) = EΠ[(δ(x)− θ)2|x] = EΠ[δ(x)2 − 2δ(x)θ + θ2|x]

= δ(x)2 − 2δ(x)EΠ[θ|x] + EΠ[θ2|x] .

Proposition 4.1. An estimator δ that minimizes the Π-posterior risk RΠ also
minimizes the π-Bayes risk Rπ.
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Proof. The π-Bayes risk can be rewritten as

Rπ(δ) =

∫
Θ

Eθ[L(δ(X), θ)]π(θ)dθ

=

∫
Θ

∫
X
L(δ(x), θ)f(x, θ)π(θ)dx dθ

=

∫
X

∫
Θ

L(δ(x), θ)
f(x, θ)π(θ)∫

Θ
f(x, θ′)π(θ′)dθ′

×
∫

Θ

f(x, θ′)π(θ′)dθ′︸ ︷︷ ︸
:=m(x)≥0

×dx dθ

=

∫
X
EΠ[L(δ(x), θ)|x]m(x)dx .

Let δΠ be a decision rule that minimizes the posterior risk, i.e. such that for all x ∈ X

EΠ[L(δΠ(x), θ)|x] ≤ EΠ[L(δ(x), θ)|x]

Multiplying by m(x) ≥ 0 and integrating on both sides over X yields the desired
result.

Example 4.5. For the quadratic risk with the squared-loss, the posterior risk is
minimized by taking δ(X) = EΠ[θ|X], by minimizing the quadratic function in δ. Other
losses will give over ways to minimize the posterior risk, and other Bayes decision rules.

Proposition 4.2. Let δ be an unbiased decision rule for θ, i.e. Eθ[δ(X)] = θ for
all θ ∈ Θ. If δ is also a Bayes rule for some prior π in the quadratic risk, then

EQ[(δ(X)− θ)2] =

∫
Θ

Eθ[(δ(X)− θ)2]π(θ)dθ = 0 ,

where EQ is the expectation taken with respect to (X, θ) under the joint distribution
Q(x, θ) = f(x, θ)π(θ). In particular δ(X) = θ with Q-probability 1.

Proof. We recall that for any random variable Z(x, θ), by applying the “tower rule”
in two different manners, we have

EQ[Z(X, θ)] = EQ[EΠ[Z(X, θ)|X]]

= EQ[Eθ[Z(X, θ)]] .

For a π-decision rule δ for the quadratic risk, we recall that δ(X) = EΠ[θ|X]. As a
consequence, taking Z(X, θ) = θδ(X) in the expressions above gives

EQ[θδ(X)] = EQ[EΠ[θδ(X)|X]] = EQ[δ(X)EΠ[θ|X]] = EQ[δ(X)2]

and
EQ[θδ(X)] = EQ[Eθ[θδ(X)]] = EQ[θEθ[δ(X)]] = EQ[θ2]

by unbiasedness. We therefore have

EQ[(δ(X)− θ)2] = EQ[δ(X)2]− 2EQ[θ δ(X)] + EQ[θ2] = 0 .
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Remark. A direct consequence is that unbiased estimators are typically disjoint
from Bayes estimators.

- In a N (θ, 1) model, the MLE X̄n is not a Bayes estimator for any prior π.
- In a Bin(n, θ) model, the MLE X/n is only Bayes in very degenerate cases (see

Examples sheet).

Definition 4.4. A prior λ is called least favorable if for every prior λ′

Rλ(δλ) ≥ Rλ′(δλ′) ,

corresponding to the worst case Bayesian risk.
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Lecture 15: Minimax risk and admissibility
Lecturer: Quentin Berthet

4.2. Minimax risk. We have seen that the Bayesian risk allows us to consider the
average loss of estimators over values of θ, by taking a prior π(θ). Another approach is
to consider the worst case over all values of θ.

Definition 4.5. The maximal risk of the decision rule δ over the parameter space
Θ is defined as

Rm(δ,Θ) = sup
θ∈Θ

R(δ, θ) .

Definition 4.6 (Minimax risk). The minimax risk is defined as the infimum (or
“min”) of the maximum risk

inf
δ

sup
θ∈Θ

R(δ, θ) = inf
δ
Rm(δ,Θ) .

A decision rule that attains this maximum risk is called minimax.

Proposition 4.3. For any prior θ and decision rule δ, we have

Rπ(δ) ≤ Rm(δ,Θ) .

Proof. We have that

Rπ(δ) = Eπ[R(δ, θ)] ≤ sup
θ∈Θ

R(δ, θ) = Rm(δ,Θ) .

As an average risk, the Bayes risk is never greater than the worst case maximum risk.

Definition 4.7. A prior λ is called least favorable if for every prior λ′

Rλ(δλ) ≥ Rλ′(δλ′) ,

corresponding to the worst case Bayesian risk.
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Proposition 4.4. Let λ be a prior on Θ such that

Rλ(δλ) = sup
θ∈Θ

R(δλ, θ) ,

where δλ is a λ-Bayes rule. Then it holds that

1. The rule δλ is minimax

2. If δλ is unique Bayes then it is unique minimax.

3. The prior λ is least favorable.

Proof. 1. Let δ be any decision rule. Then

sup
θ∈Θ

R(δ, θ) ≥ Eλ[R(δ, θ)]∫
Θ

R(δ, θ)λ(θ)dθ

≥ Eλ[R(δλ, θ)]∫
Θ

R(δλ, θ)λ(θ)dθ

= Rλ(δλ)

= sup
θ∈Θ

R(δλ, θ)

Taking infimum over δ gives the result.

2. If δλ is unique Bayes the second inequality is strict for any δ′ 6= δλ.

3. For any prior λ′, we have

Rλ′(δλ′) = Eλ′ [R(δλ′ , θ)]

≤ Eλ′ [R(δλ, θ)] by definition of δλ′

≤ sup
θ∈Θ

R(δλ, θ)

= Eλ[R(δλ, θ)] .

Corollary 4.1. If a (unique) Bayes rule δλ has constant risk in θ, then it is
(unique) minimax.

Proof. If a Bayes rule δλ has constant risk, then

Rλ(δλ) = Eλ[R(δλ, θ)︸ ︷︷ ︸
const. in θ

] = sup
θ∈Θ

R(δλ, θ) ,

so the hypothesis in Proposition 4.7 is satisfied. Uniqueness of the Bayes rule implies
uniqueness of the minimax rule, as in part 2. of the proposition.
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Example 4.6. Hence if the maximal risk of a Bayes rule δλ equals the Bayes risk,
then λ is least favorable and the corresponding Bayes rule is minimax.

- In a Bin(n, θ) model, let πa,b be a Beta(a, b) prior on θ ∈ [0, 1]. Then the unique
Bayes rule for πa,b over the quadratic risk is the posterior mean δa,b = θ̄a,b. Trying
to solve the equation

R(δa,b, θ) = const. ∀θ ∈ [0, 1]

we can find a prior πa∗,b∗ and corresponding Bayes rule δπa∗,b∗ of constant risk.
It is therefore unique minimax, and different from the MLE (see Examples sheet).

- In a N (θ, 1) model, X̄n is minimax, as proved later.

4.3. Admissibility.

Definition 4.8. A decision rule δ is inadmissible if there exists δ′ such that

R(δ′, θ) ≤ R(δ, θ) ∀θ ∈ Θ and

R(δ′, θ) < R(δ, θ) for some θ ∈ Θ.

Remark.

- The intuition is that there is no reason to chose an inadmissible estimator or de-
cision rule: it would always be better to chose another estimator that dominates it.

- Admissibility is not the only criterion to evaluate an estimator: In most cases, a
constant estimator will be admissible for the quadratic risk, but it is often not
reasonable.

Proposition 4.5.

i) A unique Bayes rule is admissible.

ii) If δ is admissible and has constant risk, then it is minimax.

Proof is done in the Examples sheet.



Principles of Statistics Part II - Michaelmas 2018

Lecture 16: Admissibility in the Gaussian model
Lecturer: Quentin Berthet

As seen in the previous lecture (with proof left to the Examples sheet), an impor-
tant manner of showing that an estimator - or decision rule in general - is minimax, is
to show that it has constant risk and that it is admissible. An example, given for illus-
tration, is that of the binomial model, where a certain Beta prior can be shown to have
a corresponding Bayes rule with constant risk. In this lecture, we study a case where
an estimator that is not Bayes for any prior can be shown to be directly admissible.

Proposition 4.6. Let X1, . . . , Xn be i.i.d. from a Gaussian N (θ, σ2), with known
σ2 and θ ∈ Θ = R. Then θ̂MLE = X̄n is admissible and minimax for estimating θ in
quadratic risk.

Proof. We treat in this proof the case of σ2 = 1 to simplify notation. The general
case follows exactly the same proof.

We first remark that this estimator has constant risk

R(θ̂MLE, θ) = Eθ[L(X̄n, θ)] = Eθ[(X̄n − θ)2] = Varθ(X̄n) =
1

n
.

For any decision rule δ, we have that

R(δ, θ) = Eθ[L(δ(X), θ)] = Eθ[(δ(X)− θ)2] =
(
Eθ[δ(X)]− θ︸ ︷︷ ︸

B(θ)

)2
+ Varθ(δ(X)) ,

where B(θ) = Eθ[δ(X)] − θ denotes the bias of the estimator δ. We recall that the
Cramèr–Rao lower bound only applies to unbiased estimators, but an examination of
the proof gives

Varθ(δ) ≥
(

d
dθ
Eθ[δ]

)2

nI(θ)
=

(
1 +B′(θ))2

n
,

since I(θ) = 1 in this model. As a consequence, if δ dominates X̄n, we have R(δ, θ) ≤ 1/n
for all θ ∈ R and

(†) B(θ)2 +

(
1 +B′(θ)

)2

n
≤ 1

n
.

The differentiability of B is a consequence of the regularity of the Gaussian model. This
immediately yields that B(θ) is bounded above and below, and that B′(θ) ≤ 0, so B
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is nonincreasing. There are therefore two sequences (θn)n≥1 going one to −∞ and the
other to +∞ such that B′(θn) → 0. Otherwise, B′(θ) would be bounded away from 0
for θ small and large enough, and B(θ) would be unbounded. As a consequence of the
inequality (†), for both of those sequences, B(θn) → 0. Since B is nonincreasing, this
yields that B(θ) = 0 for all θ ∈ R and the Cramèr–Rao lower bound applies.

Varθ(δ) ≥
1

n

and R(δ, θ) = 1/n for all θ. We have proved that if R(δ, θ) is uniformly smaller than
1/n, it is equal to 1/n. Therefore δ does not dominate θ̂MLE and the MLE is admissible.
Since it also has constant risk, it is also minimax, by Proposition 4.5.

Remark. The decision rule studied here is not a Bayes rule for any prior, as seen
in Examples sheet. It is however, in some sense, the limit of the Bayes rules δν2 for prior
N (0, ν2), when ν →∞. It can be shown that all minimax rules are limits of Bayes rule.
The result shown here can be extended to dimension p = 2, with a model N (θ, I2),
where θ ∈ Θ = R2. It is however false for p ≥ 3, which is the focus of the following.

4.4. The James–Stein phenomenon. At first sight, it appears intuitive that the re-
sult above, in dimension 1, should extend to any dimension: when estimating several
quantities subject to independent Gaussian errors, if the “best” way to estimate each
of them (under quadratic risk) is to take the given observation, why should one do
any differently when considering them altogether? In this section, we show that in the
model X ∼ N (θ, Ip), for p ≥ 3, the MLE given by θ̂ = X is not admissible. The idea is
that it is possible to construct a new estimator δJS, the James–Stein estimator which
uses the whole vector to estimate any coordinate

Definition 4.9. For a vector X ∈ Rp,the James–Stein estimator is defined as

δJS(X) =
(

1− p− 2

‖X‖2

)
X .

In a Gaussian model X ∼ N (θ, Ip) for θ ∈ Rp (with a single observation, to simplify
notation), the risk of the MLE is given by

R(θ̂MLE, θ) = Eθ[‖X − θ‖2] =

p∑
j=1

Eθ[(Xi − θi)2] = p .

In order to show that δJS dominates θ̂MLE, we can explicitly compute the risk given by
R(δJS, θ) = Eθ[‖δJS(X)− θ‖2]. In this computation, we will use the following lemma.
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Lemma 4.1 (Stein’s lemma). Let X ∼ N (θ, 1) and g : R → R be a bounded,
differentiable function such that E|g′(X)| <∞. We have

E[(X − θ)g(X)] = E[g′(X)] .

Proof. We compute explicitly

E[(X − θ)g(X)] =

∫
R

g(x)(x− θ)e
− (x−θ)2

2

√
2π

dx

= −
∫
R

g(x)
[ d

dx

e−
(x−θ)2

2

√
2π

]
dx

= −
[
g(x)

e−
(x−θ)2

2

√
2π

]+∞

−∞
+

∫
R

g′(x)
e−

(x−θ)2
2

√
2π

dx

= E[g′(X)]

Integration by parts is taken on R, but taking it on [−N,N ] and letting N go to ∞
yields the same result. The first term is equal to 0 because g is bounded, and e−x

2
goes

to 0 at ±∞.

Remark.

- One can think of this formula as of “Gaussian integration by parts”: we have
for the standard Gaussian density ϕ that A(ϕ)(x) = ϕ′(x) + xϕ(x) = 0, and
integration by parts guarantees that for such functions g and regular densities p

〈g,A(p)〉 = 〈A∗(g), p〉 ,

where A∗(g)(x) = −g′(x)+x g(x). The fact that A(ϕ) = 0 implies 〈A∗(g), ϕ〉 = 0.
This interpretation, from the point of view of analysis of functions can be used
to show the converse of this result. Informally, if 〈A∗(g), p〉 = 0 over a large class
of functions, then 〈g,A(p)〉 = 0. If this class is large enough, this implies that
A(p)(x) = 0, and the differential equation implies that p = ϕ,i.e. that the density
is Gaussian.

- Since the converse is true, this can be used to show that some distributions are
“almost Gaussian”, if the identity above is “almost satisfied”. This can be used
to show that a distribution converges to a standard Gaussian, when it is too
complicated to do so directly (e.g. sum of dependent random variables).
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Lecture 17: Risk of the James–Stein estimator
Lecturer: Quentin Berthet

Proposition 4.7. Let X ∼ N (θ, Ip), for p ≥ 3. The risk of the James–Stein
estimator satisfies forall θ ∈ Rp

R(δJS, θ) < p .

Proof. We compute the risk directly

R(δJS, θ) = Eθ[‖δJS(X)− θ‖2] = Eθ

[∥∥X − θ − p− 2

‖X‖2
X
∥∥2]

= Eθ

[∥∥X − θ∥∥2]
+ (p− 2)2Eθ

[∥∥ X

‖X‖2

∥∥2]− 2(p− 2)Eθ

[X>(X − θ)
‖X‖2

]
= p+ (p− 2)2Eθ

[ 1

‖X‖2

]
− 2(p− 2)Eθ

[X>(X − θ)
‖X‖2

]
The last term is the only potentially negative term here, we develop it explicitly

Eθ

[X>(X − θ)
‖X‖2

]
=

p∑
j=1

Eθ

[Xj(Xj − θj)
‖X‖2

]
=

p∑
j=1

Eθ

[
Ej

[
(Xj−θj)

Xj

X2
j +

∑
i 6=j X

2
i

|X(−j)
]]
,

the last equality being an application of the tower property, conditioning on all the other
coefficients X(−j) = X1, . . . , Xj−1, Xj+1, . . . , Xp. Each of these conditional expectations
is computed as

Ej

[
(Xj − θj)

Xj

X2
j +

∑
i 6=j X

2
i

|X(−j)
]

= E[(Xj − θj)gj(Xj)]

where Xj ∼ N (θj, 1) and gj(x) = x/(x2 +
∑

i 6=j X
2
i ) is a bounded function, with prob-

ability 1. We have that

g′j(x) =
x2 +

∑
i 6=j X

2
i − 2x2

(x2 +
∑

i 6=j X
2
i )2

The derivative is also bounded, so E|g′j(Xj)| <∞ and Stein’s lemma applies, we have

E[(Xj − θj)gj(Xj)] = E[g′(Xj)] = Ej

[X2
j +

∑
i 6=j X

2
i − 2X2

j

(X2
j +

∑
i 6=j X

2
i )2

|X(−j)
]
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and

Eθ

[
Ej

[
(Xj−θj)

Xj

X2
j +

∑
i 6=j X

2
i

|X(−j)
]]

= Eθ[
X2
j +

∑
i 6=j X

2
i − 2X2

j

(X2
j +

∑
i 6=j X

2
i )2

] = Eθ

[ 1

‖X‖2
−

2X2
j

‖X‖4

]
summing this from 1 to p yields that

Eθ

[X>(X − θ)
‖X‖2

]
=

p∑
j=1

Eθ

[ 1

‖X‖2
−

2X2
j

‖X‖4

]
= (p− 2)Eθ

[ 1

‖X‖2

]
.

Plugging this in the computation of the risk gives

R(δJS, θ) = p− (p− 2)2Eθ[
1

‖X‖2
] < p .

Indeed, the term Eθ[1/‖X‖2] is always positive, it can even be lower bounded in the
following way, where φ is the density of the p-variate standard normal.

Eθ[1/‖X‖2] =

∫
Rp

1

‖x‖2
φ(x−θ)dx ≥

∫
c1≤‖x‖≤c2

1

‖x‖2
φ(x−θ)dx ≥ 1

c2
2

Pθ(‖x‖ ∈ [c1, c2]) > 0 .

This direct computation can be helpful to analyze R(δJS, θ) when ‖θ‖ → ∞.

Remark.

- Even though R(δJS, θ) < R(X, θ), meaning that X is not admissible, they have
the same maximal risk: indeed, when ‖θ‖ → ∞, R(δJS, θ)→ p.

- While δJS is an improvement on X because it dominates it, it is itself not admis-
sible, as it is dominated by δJS+ defined by

δJS+(X) =
(

1− p− 2

‖X‖2

)+

X .

It can be shown that admissible estimators must be smooth in the observation.
As a consequence, this is itself an inadmissible estimator.

- In practice, X can be much easier to work with, in particular to design tests or
confidence regions, since its distribution is easily tractable, which is not the case
of the James–Stein estimator.

4.5. Classification problems. A decision problem of great practical importance is
that of classification. It is a type of regression problem, with a variable X ∼ PX on a
set X , and a binary response Y ∈ {0, 1}, with probabilities depending on the value of
X. The joint distribution can therefore be written as Q(x, y), with

X ∼ PX , and P(Y = 1 |X = x) = E[Y |X = x] = η(x) .

The objective in this problem is to predict the value of Y given X. This setting has
various applications.
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Example 4.7. In a football match between two teams, the information x ∈ Rp

(number of goals scored by each of the players last year, age of the referee, etc.) can be
used to predict the probability that the home team wins. If it is modelled as η(x), we
are in the model above.

Another equivalent way to formulate this problem is closer to hypothesis testing: A
variable Y is drawn from {0, 1} with probability (π0, π1) and

X |Y = 0 ∼ f0(x) or X |Y = 1 ∼ f1(x) ,

for two distributions assumed for now to be known. In practice, the distributions f0

and f1 are often unknown, and estimated based on samples.

Example 4.8. Based on a vector of medical observation X = (X1, . . . , Xp)
> about

a patient, we would like to determine if the patient has the flu (in which case X ∼ f1)
or not (and X ∼ f0).

As in hypothesis testing, the decision rule of this problem only has two possible
actions, predicting either the value 0 or the value 1.

Definition 4.10. A classification rule δ is a function δ : X → {0, 1}. It is equiva-
lently defined by a region R such that

δ(X) = δR(X) =

{
1 if x ∈ R,
0 if x ∈ Rc .

The probability of error of δR is therefore given by two quantities:

- The probability of misclassifying X ∼ f1

P(X ∈ Rc |Y = 1) =

∫
Rc
f1(x)dx = P1(X ∈ Rc) .

- The probability of misclassifying X ∼ f0

P(X ∈ R |Y = 0) =

∫
R
f0(x)dx = P0(X ∈ R) .

Together, they describe the whole risk function of δR. Under a prior π = (π0, π1) the
Bayes risk is therefore equal to

Rπ(δR) = π0P(X ∈ R |Y = 0) + π1P(X ∈ Rc |Y = 1) .

Intuitively, good decision rules will correspond to regions where X ∈ R is more likely
under f1 than under f0, and vice-versa.
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Lecture 18: Classification problems
Lecturer: Quentin Berthet

Remark. Consider the joint distribution Q on X × {0, 1} defined by

Q(x, y) = f(x, y)π(y)

where π(1) = π1, π(0) = π0, f(x, 1) = f1(x) and f(x, 0) = f0(x). This is the joint
distribution of Y - the index of fi - and of X, as introduced before. We recall that two
interpretations of this problem are equivalent.

- The variable Y is drawn randomly from π, and X with distribution f(x, y), condi-
tionally on the value y of Y . This is the point of view given in the previous lecture.

- The variable X is drawn from its marginal distribution PX given by

PX(x) =
∑
y

Q(x, y) = π0f0(x) + π1f1(x) .

The variable Y is drawn from a posterior distribution with

Π(1|X = x) =
π1f1(x)

π0f0(x) + π1f1(x)
, and Π(0|X = x) =

π0f0(x)

π0f0(x) + π1f1(x)
.

A common notation for (Π(1|X = x),Π(0|X = x)) is (η(x), 1 − η(x)). It can be
interpreted as a local probability for the value of the label.

Conceptually, the second point of view can give a better understanding in some other
models, where the goal is to predict the value of the label, based on side information
X.

Proposition 4.8. The classification error, or Bayes classification risk, satisfies

Rπ(δ) = PQ(δ(X) 6= Y ) .

Proof.

PQ(δ(X) 6= Y ) = PQ(Y = 1 and δ(X) 6= 1) + PQ(Y = 0 and δ(X) 6= 0)

= π1P1(X /∈ Rc) + π0P0(X /∈ R) = Rπ(δ) .
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This concludes the proof. To provide further explanation, the other formulation gives

PQ(δ(X) 6= Y ) = EQ[1{δ(X) 6= Y }] =

∫
X

Π(δc(x)|x)dPX(x) ,

where δc = 1− δ, the complement of δ in {0, 1}.

These two formulations give the same intuition: in order to minimize the probability
of error we should pick δ such that it is equal to 1 when η(x) is large, 0 otherwise. This
is equivalent to taking R such that the probabilities of X ∈ R under P1 and of X ∈ Rc

under P0 are low.

Definition 4.11. For a prior π = (π0, π1), with π1 ∈ (0, 1), the Bayes classifier is
given by δπ = δR

δR(X) =

{
1 if x ∈ R,
0 if x ∈ Rc ,

where

R =
{
x ∈ X :

π1f1(x)

(1− π1)f0(x)
≥ 1
}
.

Proposition 4.9. The Bayes classifier δπ is the rule that minimizes the Bayes
classification risk. If

Pi

( π1f1(x)

(1− π1)f0(x)
= 1
)

= 0 ,

then the Bayes rule is unique.

Proof. Let J ⊆ X be a classification region. The classification error associated to
this region is

Rπ(δJ ) = π1

∫
J c
f1(x)dx+ (1− π1)

∫
J
f0(x)dx

=

∫
J c

[π1f1(x)− (1− π1)f0(x)]dx+ (1− π1)

∫
X
f0(x)dx︸ ︷︷ ︸

ind. of J

.

The first term is minimized when the integrated term is nonpositive, i.e. when δJ is
equal to the Bayes classification rule. It is a unique Bayes rule when the boundary has
probability 0.

Remark. Since a unique Bayes rule is admissible, the Bayes classifier is admissible
in this case. Using this property can be useful to find a minimax classifier. For any
q ∈ (0, 1), let δq be the associated Bayes classifier for the prior (q, 1 − q) and Rq the
corresponding classifying region. The risk consists of two values, the probabilities of
error P(Rc

q | 1) and P(Rq | 0), so finding q such that

P(Rc
q | 1) = P(Rq | 0) = const.

we find a Bayes rule that has constant risk and is minimax.
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Example 4.9. Consider the example of two normal distributions

X ∼ f0 = N (µ0,Σ) or X ∼ f1 = N (µ1,Σ) ,

where µi ∈ Rp and Σ is a p × p covariance matrix. One can show that any Bayes rule
or minimax classifier depends on the data X only through the discriminant function

D(X) = X>Σ(µ1 − µ0) ,

which is linear in X. This method is known as Linear discriminant analysis.

Remark. In practice, the two distributions and the prior are unknown, and so is
the posterior η. In statistical learning theory, the objective is to “estimate” η from past
observations (X1, Y1), . . . , (Xn, Yn), with Yi ∈ {0, 1}. Since PQ(δ(X) 6= Y ) cannot be
directly minimized (as Q is unknown), we can minimize instead a sample version

1

n

n∑
i=1

1{δ(Xi) 6= Yi} .

In practice, the decision rules considered are parametrized of the form

δβ(x) = 1{hβ(x) ≥ 1/2} ,

where β is chosen to minimize the observed probability error above. It is equivalent to
minimize

1

n

n∑
i=1

1{δ(Xi) 6= Yi} =
1

n

n∑
i=1

1{|hβ(Xi)− Yi| ≥ 1/2}

In order to simplify this optimization procedure, it is possible to consider a smooth
version

1

n

n∑
i=1

`
(
hβ(Xi), Yi

)
.

examples include `(h, y) = (h− y)2 or log(1 + ehy). Recent progress in artificial intelli-
gence and machine learning is sometimes based on these classical ideas.
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Lecture 19: Multivariate analysis and PCA
Lecturer: Quentin Berthet

5. Further topics.

5.1. Multivariate analysis & PCA.

Definition 5.1. We recall that for two real-valued random variables X, Y , their
covariance is defined as

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])]

and their correlation is

ρX,Y =
Cov(X, Y )√

Var(X) ·
√

Var(Y )

Given observations (X1, Y1), . . . , (Xn, Yn) the sample correlation coefficient is

ρ̂X,Y =
1
n

∑n
i=1(Xi − X̄n)(Yi − Ȳn)√

1
n

∑n
i=1(Xi − X̄n)2 · 1

n

∑n
i=1(Yi − Ȳn)

By standard results of this course, if Var(X),Var(X) are positive and finite, all the
sample versions of Var(X), Var(X), and Cov(X, Y ) are consistent, and ρ̂X,Y as well
(proof is left as exercise).

Remark.

- If the model is N (µ,Σ), this is equal to the MLE ρMLE.

- In a N (µ,Σ) for X = (X(1), . . . , X(p))>, Cov(X(i), X(j)) = Σij and if Σ is positive
definite

ρX(i),X(j) =
Σij√

Σii · Σjj

.

- The matrix [ρ]ij = ρX(i),X(j) has coefficients in [−1, 1], with diagonal coefficients
equal to 1, and is semidefinite positive.

Informal notes, based on past lecture notes by Richard Nickl. Please let me know of any errors.
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Proposition 5.1.

- Given Σ a p × p semidefinite positive matrix, there exists X ∈ Rp such that
E[X] = 0 and Σ = Cov(X).

- Given ρ a p×p semidefinite positive matrix with ones on the diagonal, there exists
X ∈ Rp such that E[X] = 0 and

ρX(i),X(j) = ρij

Remark.

- The proof is left to Examples sheet.

- These conditions are necessary and sufficient.

- These characterization are helpful when estimating such matrices: optimization
problems on these sets will often be tractable, and it is practical to have an explicit
description of “the set of covariance (or of correlation) matrices”.

Proposition 5.2. Under a N (0, Ip) model the distribution of ρ̂X,Y is given by the
following density

fρ̂(r) =
Γ(1

2
(n− 1))

Γ(1
2
(n− 2))

(1− r2)
1
2

(n−4) , for − 1 ≤ r ≤ 1 .

Remark. It can be used to design hypothesis tests or confidence regions for ρ.

Proposition 5.3. For a given random vector X ∈ Rp, and X ∼ N (µ,Σ) such that

X> = ( · · · X(1)> · · ·︸ ︷︷ ︸
∈Rq

, · · · X(2)> · · ·︸ ︷︷ ︸
∈Rp−q

)

with covariance matrix given by

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
the covariance of X(1)|X(2) is given by

Σ11|2 = Σ11 − Σ12Σ−1
22 Σ21 .

The partial correlation of X(1)(i),X(1)(j)for1 ≤ i, j ≤ q is given by

ρi,j|2 =
(Σ11|2)ij√

(Σ11|2)ii ·
√

(Σ11|2)jj
.

It can also be estimated by plug-in MLE.
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5.1.1. Principal component analysis (PCA). Principal component analysis is a com-
mon method in data analysis to reduce the dimension of a dataset, while trying to
preserve as much information as possible. This is done by projecting the observations
on directions with maximum variance.

From a mathematical statistics point of view, we want to recover information about
the leading eigenspaces of the covariance matrix Σ.

For a random vector X ∈ Rp, E[X] = 0, and Σ = E[XX>], there is an orthogonal
matrix V (i.e. V V > = Ip) such that

Σ = V ΛV > , where Λ = diag
(
{λi}

)
λ1 ≥ λ2 ≥ . . . ≥ λp .

This can be rewritten as

Σ =

p∑
i=1

λiviv
>
i .

If we define U = V >X, the vector of coefficients of X in the basis of the vi’s, then

E[UU>] = E[V >XX>V ] = V >E[XX>]V = V >ΣV = V >V ΛV >V = Λ .

Writing the random vector X in the basis described by V gives a vector of uncorre-
lated coefficients with variances λi. As a direct consequence, the following holds in the
Gaussian case.

Proposition 5.4. If X ∼ N (0,Σ), then U = V >X ∼ N (0,Λ), so the Ui are
independent.

Furthermore, if Z ∼ N (0,Λ), X = V Z in distribution

X =

p∑
i=1

vi︸︷︷︸
∈Rp, determ.

Zi︸︷︷︸
∈R, r.v.

=

p∑
i=1

vi
√
λiGi ,

where the Gi are i.i.d. N (0, 1) (or G ∼ N (0, Ip)).

This representation gives an interpretation of principal component analysis. The vec-
tor X is the sum of orthogonal effects, along vector vi’s, with different amplitudes λi.
The main directions, or principal components are those with greatest variance.
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Lecture 20: Resampling principles & the bootstrap
Lecturer: Quentin Berthet

5.2. Resampling principles & the bootstrap. One of the informal intuition given by
our analysis of statistics thus far is that the greater the sample size n is, the more
information about our model we have, and the easier most statistical tasks get. The
idea between resampling techniques is that it is sometimes possible to reuse some in-
formation from the sample by drawing again partially from the sample. The first case
is given as an illustrating example.

Let Tn = T (X1, . . . , Xn) be an estimator of a parameter θ, with bias B(θ) = Eθ[Tn]−
θ. If the estimator is biased, it is possible to achieve a bias reduction as follows

Definition 5.2. Let T(−i) = T (X1, . . . , Xi−1, Xi+1, . . . , Xn) be the estimator with
the i-th observation removed. The jacknife bias estimate is defined as

B̂n = (n− 1)
( 1

n

n∑
i=1

T(−i) − Tn
)

and the jacknife bias corrected estimate of θ is

T̃ = T̃JACK = Tn − B̂n .

Proposition 5.5. For regular bias functions B(θ), it holds that

|E[T̃JACK ]− θ| = O
( 1

n2

)
,

see Examples sheet.

Remark. A bias reduction does not necessarily imply a smaller risk, but the re-
sampling idea can be generalized to statistical inference.

Remark (Motivation). In the statistical problem of estimating the mean of a dis-
tribution P based on X1, . . . , Xn ∼ P i.i.d., where E[X] = µ and Var(X) = σ2, in order
to build the asymptotic confidence interval

Cn = {ν ∈ R : |ν − X̄n| ≤ σzα/
√
n}

Informal notes, based on past lecture notes by Richard Nickl. Please let me know of any errors.
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2 20: Resampling principles & the bootstrap

one needs to know the variance σ2, or to replace it by an estimate σ̂2. In order to
show that it has the proper asymptotic probability, one also needs to know the limiting

distribution
√
n(X̄n − µ)

d.−→ N (0, σ2). Instead of relying these principles, we can rely
on the bootstrap, by reusing information from the sample.

Definition 5.3. For fixed observations X1, . . . , Xn, we define a discrete probability
distribution Pn = Pn(· |X1, . . . , Xn) that generates (Xb

n,i : 1 ≤ i ≤ n), n indendent
copies of Xb

n with law

Pn(Xb
n = Xi) =

1

n
for 1 ≤ i ≤ n .

In other words, we sample n values uniformly at random, independently (with re-
placement) from the existing Xi.

Proposition 5.6.

E[Xb
n] =

n∑
i=1

Xi P(Xb
n = Xi) =

1

n

n∑
i=1

Xi = X̄n .

The Xb
n,i are therefore drawn from a population with mean X̄n (conditionally on the

Xi’s) and the bootstrap sample mean X̄b
n = 1

n

∑n
i=1 X

b
n,i “estimates” X̄n.

Remark. In order to build a valid confidence interval, it is important to under-
stand, at least approximately, the distribution of X̄n − µ. The main idea behind the
bootstrap principle is that the distribution of

X̄b
n − X̄n = X̄b

n − E[X̄b
n]

is approximately the same as the one of

X̄n − µ = X̄n − E[X̄n] .

This supports the following construction.

Definition 5.4. Let Rb
n = Rb

n(X1, . . . , Xn) satisfy

Pn

(
|X̄b

n − X̄n| ≤ Rb
n/
√
n | X1, . . . , Xn

)
= 1− α

The bootstrap confidence set Cbn is defined as

Cbn = {ν ∈ R : |ν − X̄n| ≤ Rb
n/
√
n} .

Remark. This confidence set can be computed without estimating σ or even know-
ing the asymptotic distribution of X̄n. On the other hand, for fixed X1, . . . , Xn, the
distribution Pn is known, and its quantiles can be determined exactly, or approximated
from simulations. Theoretically, it is not technically necessary to actually create the
bootstrap sample, but just to use it as a thought experiment to compute the root Rb

n.
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Remark. We note that Pn(X̄b
n ∈ Cbn) = 1 − α by definition. Our objective is to

show that P (µ ∈ Cbn) → 1 − α as n → ∞, to show that it is a proper frequentist
confidence interval. This follows from the following theorem.

Theorem 5.1. Let X1, . . . , Xn be drawn i.i.d. from P with mean µ and finite vari-
ance σ2. We have, as n→∞

sup
t∈R
|Pn

(√
n(X̄b

n − X̄n) ≤ t|X1, . . . , Xn

)
− Φ(t)| a.s.−−→ 0 ,

where Φ is the c.d.f. of a N (0, σ2) distribution.

The proof of this theorem is the subject of the following lecture.
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Lecture 21: Validity of the bootstrap
Lecturer: Quentin Berthet

In the previous lecture, we stated that the c.d.f. of
√
n(X̄b

n − X̄n) converges uni-
formly to that of a N (0, σ2). As in the case of the Bernstein–von Mises theorem, this
can be used to show that P (µ ∈ Cbn)→ 1−α. The idea of the proof given in this lecture
is as follows.

For a fixed infinite sequence X1, X2, . . . (equivalent to a fixed ω in the probability
space of sequences from P ), we have a sequence of distributions Pn conditioned on
X1, . . . , Xn

- We show that for almost all ω, for a sequence of random variables An with dis-
tributions Qn, we have a CLT-type result as n→∞

An
d.−→ N (0, σ2) .

- We show that for these ω, this implies the uniform convergence of the c.d.f. to
that of N (0, σ2).

- This implies the desired result. There are “two layers” of randomness here: the
infinite sequence of (Xi)i≥1 and the drawing of the bootstrap sample under Pn,
conditionally on the infinite sequence. What we show here is that for some (Xi)i≥1

satisfying some properties, the resulting sequence of Pn will satisfy the uniform
convergence of the c.d.f. (this is a deterministic result). Furthermore, almost all
the sequences satisfy these properties, implying the almost sure convergence.
In order to show a result on sequence of random Pn, we show that it holds for all
ω satisfying some properties, and that almost all

Lemma 5.1. If An ∼ fn with c.d.f. Fn and A ∼ f with continuous c.d.f. F. We
have, as n→∞

An ∼ fn
d.−→ A ∼ f ⇒ sup

t∈R
|Fn(t)− F (t)| → 0 .

Proof. Since F is monotonous and continuous, for all integer k and 1 ≤ i ≤ k − 1,
there exists xi ∈ R such that F (xi) = i/k, and −∞ = x0 < x1 < . . . < xk = +∞.
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As a consequence, for all x ∈ [xi−1, xi), we have

Fn(x)− F (x) ≤ Fn(xi)− F (xi−1) = Fn(xi)− F (xi) +
1

k

Fn(x)− F (x) ≥ Fn(xi−1)− F (xi) = Fn(xi−1)− F (xi−1)− 1

k
.

Taking k large enough such that 1/k < ε/2 and n ≥ Nk, by convergence in distribution
|Fn(xi)− F (xi)| < ε/2 For all 0 ≤ i ≤ k. It therefore holds that

sup
x∈R
|Fn(x)− F (x)| ≤ ε/2 + 1/k < ε .

Definition 5.5 (i.i.d. triangular arrays). The sequence (Zn,i ; 1 ≤ i ≤ n)n≥1 is a
triangular array of i.i.d. random variables if: for all n ≥ 1, Zn,1, . . . , Zn,n are n i.i.d.
draws from a distribution Qn.

Remark. The name comes from writing each of the sequences Zn,1, . . . , Zn,n on a
row in order, following matrix notation. On each row, the variables are i.i.d. but no
assumption is made across rows: the distribution can change at each line.

Proposition 5.7 (CLT for triangular arrays). Let (Zn,i ; 1 ≤ i ≤ n)n≥1 be a tri-
angular array of i.i.d. random variables all with finite variance such that Var(Zn,i) =
σ2
n → σ2 as n→∞. Then, under assumptions (1-3), we have

√
n
( 1

n

n∑
i=1

Zn,i − En[Zn,i]
)

d.−→ N (0, σ2) .

Assumptions:

1) For all δ > 0, nPn(|Zn,1 > δ
√
n)→ 0 as n→∞.

2) Var(Zn,11{|Zn,1 ≤
√
n})→ σ2 as n→∞.

3)
√
nE[Zn,11{|Zn,1 >

√
n}]→ 0.

This result, as well as its assumptions, are not examinable, and the proof is not shown
here. It is simply used in the proof of Theorem 5.1.

Proof of Theorem 5.1. Fix (Xi)i≥1 (equivalent to fixing ω in the original prob-
ability space).
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∗Under the distribution Pn(· |X1, . . . , Xn), with Zn,i = X
b(n)
i , and En[Zn,i] = E[X

b(n)
i ] =

X̄n. The sequence (X
b(n)
i ; 1 ≤ i ≤ n)n≥1 is a triangular array of i.i.d. variables. We have

that

Var(X
b(n)
i ) = En[(X

b(n)
i )2]− En[X

b(n)
i ]2

=
1

n

n∑
i=1

X2
i −

( 1

n

n∑
i=1

Xi

)2

= σ2
n .

∗ For ω such that σ2
n → σ2 (and for which the assumptions 1-3 are satisfied), we have

√
n(X̄b(n)

n − X̄n︸︷︷︸
E[X

b(n)
n ]

)
d.−→ N (0, σ2) .

∗ By Lemma 5.1, this that implies for such ω

sup
t∈R
|Pn

(√
n(X̄b

n − X̄n) ≤ t|X1, . . . , Xn

)
− Φ(t)| → 0 ,

∗ By the law of large numbers, σ2
n → σ2 for almost all ω, the assumptions 1-3 being

also satisfied, we obtain the final result.

Remark. This shows the validity of the bootstrap method for confidence intervals
for the mean. In a general estimation, this method can be extended in the following
manner.

In a parametric model {Pθ : θ ∈ Θ}, the ideas can be extended in at least two ways.
1) One resamples (Xb

n,i : 1 ≤ i ≤ n)from Pn and computes the MLE θ̂bn based on
the bootstrap sample. Akin to using X̄b

n − X̄n as a proxy for X̄n − E[X], we can use√
n(θ̂bn− θ̂n) as a pivot for

√
n(θ̂n−θ0), around the MLE θ̂n and find roots Rn such that

Pn

(
‖θ̂bn − θ̂n‖ ≤

Rn√
n
|X1, . . . , Xn

)
= 1− α .

It is possible to show that the bootstrap confidence set

Cbn =
{
θ : ‖θ̂bn − θ̂n‖ ≤

Rn√
n

}
satisfies Pθ0(θ0 ∈ Cbn). It is not necessary to estimate the Fisher information or to know
the asymptotic distribution of θ̂n. This is known as the nonparametric bootstrap as we
resample directly from the Xi without using the parametric model.

2) In contrast, in the parametric bootstrap, one samples directly from Pθ̂n , using the

MLE θ̂n, and uses the same ideas as above.
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5.3. Monte-Carlo methods. To apply in practice many statistical techniques studied
in this course, one often needs access to quantities related to a fixed, known distribution.
Examples include the mean of a posterior distribution, level sets of a multivariate
Gaussian distribution, quantiles of a bootstrap resampling distribution, etc. Often, there
is no explicit, closed-form formula for these quantities, and one must use simulation
techniques in order to approximate them.

Definition 5.6. A pseudo-random uniform sample is a a collection of variables
U∗1 , . . . , U

∗
N such that for all u1, . . . , uN ∈ [0, 1]

P(U∗1 ≤ u1, . . . , U
∗
N ≤ uN) ≈ P(U1 ≤ u1, . . . , UN ≤ uN) = u1 . . . uN .

Remark. The sign “≈” means that the equality holds up to machine precision.
For the purposes of this course, one can consider that this is an “=” sign, and that
U∗1 , . . . , U

∗
N ∼ U [0, 1] i.i.d. This can be used as a starting point to generate samples

from other distributions

Proposition 5.8. Let U1, . . . , UN
i.i.d.∼ U [0, 1] and Xi be defined, for 1 ≤ i ≤ N as

Xi =
n∑
j=1

xj1
{
Ui ∈

(j − 1

n
,
j

n

]}
.

Then, the Xi are i.i.d. uniform over the set {x1, . . . , xn}.

Proof. The independence of the Xi stems directly from the independence of the Ui.
One can check directly that for all i, j

P(Xi = xj) = P
(
Ui ∈

(j − 1

n
,
j

n

])
=

1

n
.

Remark. This proposition shows how one can generate i.i.d. samples from a uni-
form distribution over any finite set. In particular this can be used to generate a boot-
strap sample, by taking the xi equal to the initial sample of size n. We note that this
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result can easily be generalized to any discrete distribution, by taking segments of dif-
ferent lengths. It can also be generalized to continuous distributions, as shown in the
following.

Definition 5.7. Let F be the c.d.f of a distribution on the reals. The generalized
inverse F− of F is defined for u ∈ (0, 1) as

F−(u) = inf{x : u ≤ F (x)} .

Remark. For continuous c.d.fs, this is equivalent to the functional inverse, and
can be seen as a “quantile function”: F−(u) gives the u-th quantile of the distribution.
It is used to generate variables with any given distribution, based on uniform random
variables.

Proposition 5.9. For any distribution P with c.d.f F and generalized inverse F−,
and U uniform over [0, 1], we have that

X = F−(U) ∼ P .

Proof. By definition of F−, we have

P (X ≤ t) = P (F−(U) ≤ t) = P (U ≤ F (t)) = F (t) .

Since F is the c.d.f of P , we have X ∼ P .

Note that for a pseudo-random sample (U∗1 , . . . , U
∗
N), this implies that (X∗1 , . . . , X

∗
N) =

(F−(U∗1 ), . . . , F−(U∗N)) is an i.i.d. sample from P . This can be used to approximate in-
tegrals or expectations, as a direct corollary of the law of large numbers, since

1

N

N∑
i=1

g(X∗i )
a.s.−−→ EP [g(X)] .

In certain situations, it is not possible to compute explicitely F− (in a N (µ, σ2) model
for instance), and one must resort to other methods.

5.3.1. Importance sampling. Let P have density f , from which it is hard to simulate
samples, and h be a density whose support includes that of f from which it is easier to
simulate samples. It holds that

Eh[
g(X)

h(X)
f(X)] =

∫
X

g(x)

h(x)
f(x)h(x)dx =

∫
X
g(x)f(x)dx = Ef [g(X)] .

As a consequence, we have, for (X∗1 , . . . , X
∗
N) generated from the distribution with

density h

1

N

N∑
i=1

g(X∗i )

h(X∗i )
f(X∗i )

a.s.−−→ Ef [g(X)] .
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5.3.2. Accept/reject algorithm. In a similar setup, with densities f and h, satisfying
f ≤Mh, for some M > 0.

- Step 1 generate X ∼ h and U ∼ U(0, 1).

- Step 2 If U ≤ f(X)/(Mh(X)), take Y = X
else, return to Step 1.

One show that Y has distribution with density f . The time taken to generate a sample
is however random, and depends on M .

5.3.3. Gibbs sampler. When dealing with joint distributions, in particular when
dealing with posterior distributions of a multivariate parameter θ that is hard to sample
from, it is possible to use the Gibbs sampler to generate approximate samples. In the
bivariate case (X, Y ), one starts at some X0 = x and applies the steps for t ≥ 1

- Yt ∼ fY |X(·|X = Xt−1),

- Xt ∼ fX|Y (·|Y = Yt).

This algorithm generates a sequence (Xt, Yt)1≤t≤N . One shows that (Xt, Yt), Xt, Yt,
are all Markov processes with respectively invariant distributions fX,Y , fX , fY . As a
consequence of the ergodic theorem, when N →∞, we have

1

N

N∑
t=1

g(Xt, Yt)
a.s.−−→ E(X,Y )[g(X, Y )] .

This can be used to compute posterior means, and can be generalized to larger number
of variables, e.g. for a parameter vector (θ1, . . . , θd) by cycling through the coefficients.
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5.4. Nonparametric methods. Informally, if the goal of statistical inference is to
gain information on a distribution based on samples from it, it is done in this course
mainly through a parameter. For a parameter set Θ, usually a subset of Rd, the distri-
bution is equal to Pθ, for some θ ∈ Θ. Finding the distribution is therefore reduced to
finding the unknown parameter, or an approximate value of it. However, it is possible to
directly estimate the distribution, without a parametric model. Formally, the goal is to
estimate the c.d.f. F of a distribution P on the reals, based on i.i.d. samples X1, . . . , Xn

from it. We recall that for all t ∈ R

F (t) = P(X ≤ t) = E[1(−∞,t](x)] .

Definition 5.8. The empirical distribution function Fn of a sample X1, . . . , Xn is
given, for all t ∈ R, by

Fn(t) =
1

n

n∑
i=1

1(−∞,t](Xi)] =
#{i : Xi ≤ t}

n

The law of large numbers guarantees, for any given t, that Fn(t) almost surely of to
F (t). It is possible to give a stronger result, about uniform convergence

Theorem 5.2 (Glivenko-Cantelli). For any F , we have as n→∞, almost surely

sup
t∈R
|Fn(t)− F (t)| → 0 .

It is a type of uniform law of large numbers. It is further possible to improve this result
in a uniform version of a central limit theorem, that involves the notion of Brownian
bridge

Definition 5.9 (Brownian motion). A Brownian motion (or Wiener process) is a
continuous process (Wt)t≥0 satisfying

- W0 = 0

- Wt −Ws ∼ N (0, t− s) for s < t, independently of (Ws′)s≤s′ .

Informal notes, based on past lecture notes by Richard Nickl. Please let me know of any errors.
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Remark. A more formal description, and proof of existence of this process can be
found in measure theory or probability courses. These are the properties needed here.
Informally, it can be thought of as the limit of a random walk with independent steps,
when the time steps goes to 0.

Definition 5.10 (Brownian bridge). A Brownian bridge is a continuous process
(Bt)0≤t≤1 equal to a Brownian motion conditioned on B1 = 0. It satisfies

- B0 = B1 = 0

- Bt ∼ N (0, t(1− t)), and Cov(Bs, Bt) = s(1− t) for s ≤ t.

It can be constructed from a Brownian motion Wt by taking Bt = Wt − tW1.

Theorem 5.3 (Donsker-Kolmogorov-Doob). As n→∞, we have that

√
n(Fn − F )

d.−→ GF ,

where GF is a Gaussian process such that GF (t) = BF (t), that satisfies

Cov(GF (s),GF (t)) = F (s)(1− F (t)) .

Remark. If X1, . . . , Xn ∼ U [0, 1] and F (t) = t, then GF (t) = Bt and
√
n(Fn − F )

converges to a standard Brownian bridge: its values are close to 0 for t close to 0 and
1, and the deviations have larger amplitude towards the middle of the segment.

For general F , the supremum of the deviations is independent F , since GF is a just
a reparametrization of a Brownian bridge, as given in the following

Theorem 5.4 (Kolmogorov-Smirnov). As n→∞, we have that

√
n‖Fn − F‖∞

d.−→ ‖GF‖∞ = sup
t∈[0,1]

|Bt| .

Remark. We note again that the limit distribution is independent of F , which is
of key importance in applications of this result

To test the null H0 : F = F0 against the alternative H1 : F 6= F0, the statistic√
n‖Fn − F‖∞ can be compared to the quantiles of ‖B‖∞, for which there are tables.

To construct a uniform confidence band Cn for F, where for all x ∈ R, Cn(x) is
centered on Fn(x) with amplitude given by the quantiles of ‖B‖∞ such that

P(F (x) ∈ Cn(x)∀x ∈ R)→ 1− α .

m


