
Optimisation Part IB - Easter 2019

Lecture 1: Introduction and convexity
Lecturer: Quentin Berthet

Introduction. The objective of this course is the study of optimization problems

min
x∈X

f(x) ,

where f is a real-valued function in a variable x over a set X . These problems arise in
many areas of mathematics and the natural sciences, and are at the center of recent
technological advances in information science. We will describe methods to solve some
of these problems, exactly or approximately, and study the properties of the solutions.

1. Convexity.

1.1. Definitions. A convenient property in optimization problems is that of convexity,
for sets and functions.

Definition 1.1 (Convexity). A subset C of Rn is convex if for all x, y ∈ C, and all
λ ∈ [0, 1], we have

(1− λ)x+ λy ∈ C .

Remark.

- This definition can be extended to more general spaces than Rn, but we will only
consider this case here.

- Intuitively, this means that every segment between two elements of C is also
contained in C.

- An important property of convex sets is that they are stable by intersection. In the
second part of this course, we will particularly focus on sets of the form Ax ≤ b.
More examples and properties are in the Examples sheet.

Definition 1.2 (Convex functions). Let X be a convex subset of Rn. A function
f : X → R is convex if for all x, y ∈ X and all λ ∈ [0, 1], we have

f
(
(1− λ)x+ λy

)
≤ (1− λ)f(x) + λf(y) .

Remark.

- This definition means that any segment (or “cord”) between two points (x, f(x))
and (y, f(y)) is above the graph of the function.

1

2 1: Introduction and convexity

- In practice, this might not be always easy to verify for a given function, a more
“analytic” point of view is given at the end of this lecture.

- More precisely, convex functions are those whose epigraph is convex. For a convex
function, level sets are convex, however the converse is not true. These two notions
are made formal in Examples sheets.

- Optimization problems involving convex functions are “well-behaved” in some
sense, and this is due mainly to the fact that local properties give information
about the global behaviour of the function. One manifestation of this phenomenon
is the following property.

Proposition 1.1. For any differentiable function f on X , f is convex if and only
if, for all x, y ∈ X

f(y) ≥ f(x) +∇f(x)>(y − x) .

Proof. In one direction, we give the proof in one dimension, i.e. that

f(y) ≥ f(x) + f ′(x)(y − x)

For x < y, and for all t ∈ (0, 1), we introduce xt = x + t(y − x) = (1 − t)x + ty. By
convexity of f , we have

f(xt) ≤ (1− t)f(x) + tf(y) .

After rearranging,
f(xt)− f(x) ≤ t(f(y)− f(x)) .

Dividing on both sides by xt − x = t(y − x) > 0, we have

f(xt)− f(x)

xt − x
≤ f(y)− f(x)

y − x
.

This means that slopes between points of the graph are “increasing” in the destination.
Letting t go to 0 on the left hand side yields

f ′(x) ≤ f(y)− f(x)

y − x

Multiplying by y− x > 0 on both sides gives the desired inequality. In the case of y < x,
the inequalities are reversed between the two uses of “y − x > 0” in this proof. The
proof in any dimension is in the Examples sheet.

For the other direction, define again xλ = (1− λ)x+ λy, we have

f(x) ≥ f(xλ) +∇f(xλ)
>(x− xλ)

f(y) ≥ f(xλ) +∇f(xλ)
>(y − xλ)

Lecture 1: Introduction and convexity 3

Adding the first line multiplied by (1− λ) and the second multiplied by λ yields

(1− λ)f(x) + λf(y) ≥ f((1− λ)x+ λy)

so f is convex.

Remark. One way to interpret this is that the function is above the best local
linear approximation of f for any x0 ∈ X ,

`x0(x) = f(x0) +∇f(x0)
>(x− x0) .

It gives a lot of information about the values of f at all points in X , given only
information at one point. The following shows the only statement we can make for a
general function g.

Proposition 1.2. For g that is differentiable on X = Rn, if x is a local minimum
of g, then ∇g(x) = 0.

Remark. The converse is not true in all generality. However, the situation is much
easier for convex functions, where local minima are global minima. This is summarized
in the following.

Proposition 1.3. If f is a differentiable convex function on X = Rn, the following
are equivalent

- x is a global minimum of f .

- ∇f(x) = 0.

Proof. The first direction is direct: if x is a global minimum, it is a local minimum,
so ∇f(x) = 0. The second direction is almost as direct, by Proposition 1.1: if ∇f(x) = 0,
then for all y ∈ X , f(y) ≥ f(x).

This shows that unconstrained convex optimization problem are, in theory, very
simple. It can be shown that if f(x)→∞ when ‖x‖ → ∞, such an x exists. Often in
cases considered in practice, there is a unique solution to the equation

∇f(x) = 0 ,

which is the unique global minimum of the convex function f . This leaves one question:
how does one check easily that a function is convex?

Proposition 1.4. A twice differentiable function f is convex if and only if it has a
semidefinite positive Hessian on the interior of X .

The proof relies on Taylor’s theorem with Lagrange remainder, for any x, y in the
interior of X

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)∇2f(ξ)(y − x) .

Optimisation Part IB - Easter 2019

Lecture 2: Gradient descent
Lecturer: Quentin Berthet

1.2. Algorithms for unconstrained convex optimization. In the previous lecture, we
saw that unconstrained convex optimization problems of the form

min
x∈Rn

f(x) ,

when f is a differentiable convex function, are conceptually easy. They are equivalent to
solving a first order equation, i.e. to find a stationary point satisfying

∇f(x) = 0 .

It might sometimes be possible to do so explicitly, but not always. In all cases, there
exists a very simple algorithm to tackle these types of problem, known as gradient
descent

Definition 1.3. The gradient descent algorithm with step η > 0, for a differentiable
function f , is an update rule for xt ∈ Rn, with x0 ∈ Rn and for all t ≥ 0

xt+1 = xt − η∇f(xt) .

Remark. This algorithm relies on the following intuition: locally around x, the line
of steepest descent is along −∇f(x). For a one dimensional convex function, since f ′(x)
is increasing in x, and equal to 0 at the minimum, the derivative is a good indicator of
the direction and distance in which we should step. The sequence of points can be also
thought of as the discrete version of the continuous gradient flow ẋ(t) = −∇f(x(t)).

Proposition 1.5. Let f be a differentiable convex function with global minimum
x∗. If ψ : x→ x− η∇f(x) satisfies ‖ψ(x)− ψ(y)‖ ≤ λ‖x− y‖ for λ ∈ [0, 1), then

‖xt − x∗‖ ≤ λt‖x0 − x∗‖ .

Proof. We have

‖xt − x∗‖ = ‖ψ(xt−1)− ψ(x∗)‖ ≤ λ‖xt−1 − x∗‖ ≤ λt‖x0 − x∗‖ .

1

2 2: Gradient descent

Remark. The main idea is therefore to show that ψ is a contraction. Upon first
inspection, we have

‖ψ(x)− ψ(y)‖2 = ‖x− y‖2 + η2‖∇f(x)−∇f(y)‖2 − 2η(∇f(x)−∇f(y))>(x− y) .

Since f is convex, writing the first order condition twice, reversing the roles of x and y,
yields

(∇f(x)−∇f(y))>(x− y) ≥ 0 .

This is a good indication that the last term can “subtract” from ‖x− y‖2, but it seems
clear that we should consider assumptions linking the behavior of f(x), ∇f(x), and
quadratic terms.

Definition 1.4. A differentiable convex function is β-smooth, if for some β ≥ 0, it
holds that

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖ .

Remark. Writing out Taylor’s theorem, this property is equivalent to the following
upper bound on the function (see Examples sheet)

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖2 .

- Not all convex function are β-smooth: as an example, f(x) = x4 is not.

- If the function is twice differentiable, this is equivalent to the Hessian having
eigenvalues upper bounded by β.

Definition 1.5. A convex function is α-strongly convex, if for some α ≥ 0, it holds
that

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖2 .

Remark. In comparison with the smoothness assumption, this is a lower bound on
the function, with a different second order term. It can be thought of as a quantitative
version of strict convexity.

- Not all function are strongly convex: a linear function, or f(x) = e−x are not.

- If the function is twice differentiable, this is equivalent to the Hessian having
eigenvalues lower bounded by α.

- As a consequence, if f is α-strongly convex and β-smooth, then β ≥ α. In this
case, g(x) = f(x)− α‖x‖2/2 is convex and (β − α)-smooth (see Examples sheet).

Lemma 1.1. Let f be a convex, β-smooth function. We have that

f(y) ≥ f(x) +∇f(x)>(y − x) +
1

2β
‖∇f(x)−∇f(y)‖2 .

Lecture 2: Gradient descent 3

The proof of this lemma is also done in Examples sheets. This result shows that even
for smooth convex functions, a stronger lower bound than the linear approximation
holds. However, there is a catch: this lower bound depends on the variations of the
function itself. Indeed, for a linear form, the linear approximation is tight, and no better
lower bound can be obtained.

Remark. As a direct corollary, switching the role of x and y, we have that

(∇f(x)−∇f(y))>(x− y) ≥ 1

β
‖∇f(x)−∇f(y)‖2 .

This is closer to what we need in order to show that ψ is a contraction, but has no term
in ‖x− y‖2. We therefore apply the inequality above to g(x) = f(x)− α‖x‖2/2, which
is a convex, (β − α)-smooth function to obtain

(∇f(x)−∇f(y))>(x− y) ≥ αβ

α + β
‖x− y‖2 +

1

β + α
‖∇f(x)−∇f(y)‖2 .

Theorem 1.1. Let f be a β-smooth, α-strongly convex function. The iterates of the
gradient descent algorithm with η = 2/(α + β) satisfy

‖xt − x∗‖ ≤
(κ− 1

κ+ 1

)t
‖x0 − x∗‖

f(xt)− f(x∗) ≤ β

2

(κ− 1

κ+ 1

)2t
‖x0 − x∗‖2 ,

where κ = β/α > 1 is the conditioning number of f .

Proof. We have, using notations above

‖ψ(x)− ψ(y)‖2 = ‖x− y‖2 + η2‖∇f(x)−∇f(y)‖2 − 2η(∇f(x)−∇f(y))>(x− y)

≤
(

1− 2
ηαβ

α + β

)
‖x− y‖2 +

(
η2 − 2

η

α + β

)
‖∇f(x)−∇f(y)‖2

=
(κ− 1

κ+ 1

)2
‖x− y‖2 .

The first inequality follows from Proposition 1.5. The second follows from β-smoothness.

f(xt)− f(x∗) ≤ ∇f(x∗)>(xt − x)︸ ︷︷ ︸
∇f(x∗)=0

+
β

2
‖xt − x‖2 .

Optimisation Part IB - Easter 2019

Lecture 3: Convex optimization
Lecturer: Quentin Berthet

In the previous lecture, we saw that for a differentiable, convex function with β-
smoothness and α-strong convexity (they can be thought of as having Hessian upper
and lower bounded), we have

‖xt − x∗‖ ≤
(κ− 1

κ+ 1

)t
‖x0 − x∗‖

f(xt)− f(x∗) ≤ β

2

(κ− 1

κ+ 1

)2t
‖x0 − x∗‖2 ,

where κ = β/α ≥ 1 is the conditioning number of the function (and of the Hessian).

Remark.

- Under less restrictive assumptions, other rates of convergence can be shown for a
convex function f .

- This method can also be used to minimize a function with noise on the gradient.
This is known as stochastic optimization, and is particularly important in statistics
and machine learning.

- The assumptions (smoothness, strong convexity) and quantities (conditioning)
appeared as inspired by the proof, but they actually describe accurately the
performance of this algorithm.

Example 1.1. In R2, for some x∗ ∈ R2 let f be the convex quadratic function
defined by

f(x) = f(x∗) +
1

2
(x− x∗)>Q(x− x∗) , with Q =

(
α 0
0 β

)
.

By definitions, for β ≥ α > 0, Q is positive definite and f is β-smooth, α-strongly
convex, with a unique global minimum at x∗. The iterates of gradient descent satisfy

xt+1 − x∗ = xt − η∇f(xt)− x∗ = xt − ηQ(xt − x∗)− x∗ = (I − ηQ)(xt − x∗) .

Decomposing in each coordinate, this yields (recalling that η = 2/(α + β))(
x
(1)
t+1 − x

(1)
∗

x
(2)
t+1 − x

(2)
∗

)
=

(
1− ηα 0

0 1− ηβ

)(
x
(1)
t − x

(1)
∗

x
(2)
t − x

(2)
∗

)
=

(
κ−1
κ+1

0

0 −κ−1
κ+1

)(
x
(1)
t − x

(1)
∗

x
(2)
t − x

(2)
∗

)
.

1

2 3: Convex optimization

One can explicitly draw the behaviour of xt to understand the behaviour of the
algorithm. More precisely, we have exactly

‖xt − x∗‖ =
(κ− 1

κ+ 1

)t
‖x0 − x∗‖ .

Remark. The example above illustrates well the impact of conditioning on the
performance of gradient descent. This can be understood in the following way: after t
iterations, given f(xt) and ∇f(xt), the update xt+1 = xt − η∇f(xt) is the minimizer of
the local quadratic approximation

qxt(x) = f(xt) +∇f(xt)
>(x− xt) +

η−1

2
‖x− xt‖2 .

The better this approximation is, i.e. the more the second-order term is close to
a quadratic with the same eigenvalue (isotropic), the closer xt+1 will be to the true
minimum of f . In particular, if f is a quadratic function with α = β, we have in one
step x1 = x∗. Note that η corresponds in the approximation above to the inverse of
the eigenvalue of the quadratic. This justifies further why in the algorithm we chose
η−1 = (α + β)/2, the mean of the two extreme eigenvalues of the Hessian.

If the Hessian has very different eigenvalues, it is possible to use this information to
minimize another approximation of this function of the form

qH(x) = f(xt) +∇f(xt)
>(x− xt) +

1

2
(x− xt)>∇2f(xt)(x− xt) .

Definition 1.6. Newton’s method for a twice differentiable function f is an update
rule for xt ∈ Rn, with x0 ∈ Rn and all t ≥ 0

xt+1 = xt − [∇2f(xt)]
−1∇f(xt) .

Remark.

- The first intuition for this algorithm is given above: the function is approximated
by a second-order approximation. There are no conditioning issues anymore: if the
function f is indeed any quadratic (no matter what the eigenvalue of the Hessian
are), then x1 = x∗.

- For general twice differentiable functions, it can converge much faster than gradient
descent. Under more assumptions on the function and on the starting point, it is
possible to show that

‖xt+1 − x∗‖ ≤ C‖xt − x∗‖2 .

however there are some caveats. The function needs to be twice differentiable, we
need to know or compute the Hessian, we also need to invert it.

Lecture 3: Convex optimization 3

- In one dimension, this simply corresponds to

xt+1 = xt −
f ′(xt)

f ′′(xt)
.

Taking g(x) = f ′(x), minimizing f convex is equivalent to finding a root of
nondecreasing g and we have

xt+1 = xt −
g(xt)

g′(xt)
.

This is also known as Newton’s method, and has a nice geometric interpretation.

1.3. Barrier function method for constrained optimization. Newton’s method can be
particularly useful to solve constrained optimization problems of the form

min f(x)

s.t. hi(x) ≤ 0 1 ≤ i ≤ m,

for convex, differentiable functions f and hi. Indeed, taking

I−(u) = 0 if u ≤ 0 , ∞ otherwise

this problem is equivalent to

min
x∈Rn

f(x) +
m∑
i=1

I−(hi(x)) .

We can approximate I−(u) by I−,t(u) = −1
t

log(−u), for any t > 0, and consider the
approximate optimization problem

min
x∈Rn

f(x) +
m∑
i=1

−(1/t) log(−hi(x)) .

Taking φ(x) =
∑m

i=1−(1/t) log(−hi(x)) (known as the barrier function), this is equivalent
to solving

min
x∈Rn

tf(x) + φ(x) .

The objective is convex, since I−,t is convex and increasing. For any t ≥ 0, it is possible
to approximately solve this problem towards its solution x∗(t). As expected, when t is
taken very large this approximately solves the original problem.

Optimisation Part IB - Easter 2019

Lecture 4: Lagrangian duality
Lecturer: Quentin Berthet

2. Lagrange duality. Many optimization problems over X with additional con-
straints h(x) = b, where h : X → Rm and b ∈ Rm.

min f(x)(1)

s.t. h(x) = b ,

x ∈ X .

This captures many problems, main idea is that it is “simple” to optimize certain
types of functions over X , and to see how this can be used to optimize over the more
complicated set X (b) = {x ∈ X : h(x) = b}. To do so, we introduce the following
notion.

Definition 2.1. The Lagrangian associated with the optimization problem (1) is
defined as

L(x, λ) = f(x)− λ>(h(x)− b) .

2.1. Lagrange sufficiency. If optimizing over X is a simple problem, we can optimize
L(·, λ) over X . This is related to the original optimization problem, as shown in the
following.

Theorem 2.1 (Lagrange sufficiency theorem). Let λ ∈ Rm, and x∗(λ) ∈ X such
that

L(x∗(λ), λ) = inf
x∈X

L(x, λ) , and h(x∗(λ)) = b .

Then, x∗(λ) is an optimal solution of problem (1) .

Proof. We have the following

inf
x∈X (b)

f(x) = inf
x∈X (b)

{
f(x)− λ>(h(x)− b)

}
≥ inf

x∈X

{
f(x)− λ>(h(x)− b)

}
= inf

x∈X
L(x, λ)

= L(x∗(λ), λ)

= f(x∗(λ)) .

1

2 4: Lagrangian duality

For such a λ, the function L(·, λ) is bounded from below, which might not always be
the case. To formally discuss this result and a strategy that uses it, we introduce the
following notation

Definition 2.2. We denote by Y the set of dual feasible vectors, defined as

Y = {λ ∈ Rm : inf
x
L(x, λ) > −∞}

Remark. We can therefore follow this strategy to solve these types of optimization
problems:

- i) For any λ ∈ Rm, find out if λ ∈ Y .
- ii) For any λ ∈ Y , find a solution x∗(λ) to minimizing L(·, λ) over X .
- iii) Find λ such that h(x∗(λ)) = b.

We have not given any guarantee that these steps are easy, or even possible. However, by
Theorem 2.1, we know that if the steps above succeed, we have solved the optimization
problem. It is not a necessary, but a sufficient condition for optimality.

Example 2.1. We consider the following problem, with m = 2, over X = R3.

min x1 − x2 − 2x3

s.t. x1 + x2 + x3 = 5 ,

x21 + x22 = 4 .

We write out the Lagrangian associated with this problem

L(x, λ) = x1 − x2 − 2x3 − λ1(x1 + x2 + x3 − 5)− λ2(x21 + x22 − 4)

= (−λ2x21 + (1− λ1)x1) + (−λ2x22 + (−1− λ1)x2) + (−2− λ1)x3 + 5λ1 + 4λ2 .

Unless λ1 = −2, letting x3 go to −∞ or +∞, L(x, λ) goes to −∞. Similarly, unless
λ2 < 0, L(x, λ) is not lower bounded. Under these conditions, we have that

∇2
xL(x, λ) =

−2λ2 0 0
0 −2λ2 0
0 0 0

 � 0 ,

so L(·, λ) is a convex function of x. To find its global minimum, we solve ∇xL(x, λ) = 0

∂L

∂x1
= 1− λ1 − 2λ2x1 = 3− 2λ2x1

∂L

∂x2
= −1− λ1 − 2λ2x2 = 1− 2λ2x2

∂L

∂x3
= −2− λ1 = 0 .

We obtain that any x∗(λ) with x∗1(λ) = 3/(2λ2) and x∗2(λ) = 1/(2λ2) is solution.
Solving so that (x∗1(λ))2 + (x∗2(λ))2 = 4 gives λ2 = −

√
5/8 and by Theorem 2.1,

x = (−3
√

2/5,−
√

2/5, 5 + 4
√

2/5) is optimal.

Lecture 4: Lagrangian duality 3

Proposition 2.1. The inequality-constrained optimization problem

min f(x)

s.t. h(x) ≤ b ,

x ∈ X .

can be reduced to the equivalent problem

min f(x)

s.t. h(x) + z = b ,

x ∈ X , z ≥ 0 .

In this case, the optimization problem has variable (x, z) in X ×Rm
≥0, with equality

constraint. The associated Lagrangian is written out as

L(x, z, λ) = f(x)− λ>(h(x) + z − b) = f(x)−
m∑
i=1

λihi(x)−
m∑
i=1

λizi +
m∑
i=1

λibi .

Theorem 2.2. For all λ ∈ Y, we have λi ≤ 0 and λiz
∗
i (λ) = 0 for all i ∈ [m], i.e.

λi 6= 0 implies z∗i (λ) = 0

z∗i (λ) 6= 0 implies λi = 0 .

In particular, for any λ∗ such that h(x∗(λ∗)) + z∗(λ∗) = b, we have

λ∗i < 0 implies hi(x
∗
i (λ)) = bi

hi(x
∗
i (λ)) < bi implies λi = 0 .

Proof. From the form taken by the Lagrangian, if λi > 0, letting zi go to +∞ lets
L(x, z, λ) go to −∞, so λi ≤ 0 for any λ ∈ Y. Further, if λi < 0 and zi > 0, then z
cannot be optimal: the value of the Lagrangian can be reduced by taking smaller zi.

Optimisation Part IB - Easter 2019

Lecture 5: Dual problem
Lecturer: Quentin Berthet

2.2. Dual problems. Another important notion related to the Lagrangian is that of
the dual problem

Definition 2.3 (Dual function). For optimization problem (1), the dual function is
defined for any λ ∈ Y as

g(λ) = inf
x∈X

L(x, λ) .

Since this function is defined as an infimum on a larger space than X (b), on which
L(x, λ) and f(x) coincide, it provides a lower bound for f on X (b). This property is
known as weak duality

Theorem 2.3 (Weak duality). For any x ∈ X (b) and y ∈ Y, we have g(λ) ≤ f(x),
and in particular

sup
λ∈Y

g(λ) ≤ inf
x∈X (b)

f(x) .

Proof. We have, for any x ∈ X (b) and λ ∈ Y

f(x) = f(x)− λ>(h(x)− b)
= L(x, λ)

≥ inf
x′∈X

L(x′, λ)

= g(λ) .

Taking the supremum and infimum on both sides yields the desired result.

It is therefore interesting to consider the maximum of this lower bound

Definition 2.4. Given optimization problem (1), the dual problem is defined as

max g(λ)

s.t. y ∈ Y .

Remark. Further than simply giving a lower bound for this problem, under certain
conditions, the result of Theorem 2.3 holds with equality, which is known as strong
duality. In these cases, it can be simpler to solve this problem than problem (1) directly.
Whenever some x ∈ X (b) and some λ ∈ Y have the same value for these two functions,
we know that we are at optimality.

1

2 5: Dual problem

As an example, in the problem considered in the previous lecture, we have for any
λ ∈ {λ ∈ R2 : λ1 = −2, λ2 < 0} that

g(λ) = inf
x∈X

L(x, λ) = L(x∗(λ), λ) =
10

λ2
+ 4λ2 − 10 .

This is maximized at λ2 = −
√

5/8, and in this case there is strong duality.

In order to understand when strong duality holds, it is helpful to have the following
interpretation of duality.

Definition 2.5. The value function ϕ of optimization problem (1) is defined for
c ∈ Rm as

ϕ(c) = inf{f(x) : h(x) = c , x ∈ X} .

Definition 2.6. We say that the function ψ has a supporting hyperplane at b ∈ Rm

if there exists λ ∈ Rm such that

ψ(c) ≥ ψ(b) + λ>(c− b) .
Remark. The supporting hyperplane is a linear form that matches the function

at b ∈ Rm and is below it everywhere. In particular, we have seen that differentiable
convex functions have a supporting hyperplane at all points.

To grasp the link with dual problems, one can rely on the following fact, given without
proof: for any λ ∈ Rm, if the function defined by α(c) = β + λ>(c− b) is a supporting
hyperplane at any point in Rm, the value α(b) = β is equal to g(λ). It is a lower bound
for ϕ(b), as known from weak duality. A special case is shown in the following result:
if such a function is a supporting hyperplane at b, and in this case β = ϕ(b), there is
strong duality.

Theorem 2.4. The value function ϕ has a supporting hyperplane at b if and only if
there is strong duality for problem (1).

Proof. There is strong duality if and only if there exists a λ ∈ Rm such that

ϕ(b) = inf
x∈X

L(x, λ) = inf
x∈X
{f(x)− λ>(h(x)− b)} .

There is a supporting hyperplane at b if and only if there exists λ ∈ Rm such that

ϕ(b) = inf
c∈Rm
{ϕ(c)− λ>(c− b)}

To show equivalence of these two properties, we see that for every λ ∈ Y , we have

inf
x∈X
{f(x)− λ>(h(x)− b)} = inf

c∈Rm
inf

x∈X (c)
{f(x)− λ>(h(x)− b)}

= inf
c∈Rm

inf
x∈X (c)

{f(x)− λ>(c− b)}

= inf
c∈Rm
{ϕ(c)− λ>(c− b)} .

Lecture 5: Dual problem 3

Remark. Of course, not every function has a supporting hyperplane at any given
point. It is possible to generalize our remark on differentiable convex functions in the
following theorem, given without proof.

Theorem 2.5. A function is convex if and only if it has a supporting hyperplane at
every point.

This implies that if the value function ϕ from Rm to R is convex, then we have
strong duality, and the strategy from the previous lecture will work, provided that we
can easily optimize L(·, λ) over X . We now give very general conditions under which
such conditions are met. We recall that for an optimization problem with variable
x ∈ X constraint h(x) ≤ b, it is equivalent to an optimization problem with variable
(x, z) ∈ X × Rm

≥0 and equality constraint h(x) + z = b, and the analysis above goes
through. These problems are particularly important because of the following result.

Proposition 2.2. The value function ϕ to the inequality constrained problem defined
by

ϕ(b) = min f(x)

s.t. h(x) ≤ b ,

x ∈ X ,

is convex over the set where ϕ is finite, if f ,h, and X are convex.

This is proved in Examples sheets, and is a callback to the message of Section 1:
convex problems are “well-behaved”, from the point of view of algorithms and of duality.
Note that if h is convex, then X (b) = {x ∈ X : h(x) ≤ b} is a convex set. Further, in
the case of equality constraints g(x) = c, they can be interpreted as two constraints
g(x) ≤ b and −g(x) ≤ −b, and if both g and −g are convex these conditions are met
again. In this case, g is a linear function.

One way to interpret this result is to see this optimization problem as a convex cost
minimization (or, up to a minus sign, concave utility maximization), under resource
constraints hi(x) ≤ bi: using the decision variable x will consume hi(x) of the i-the
resource, of which there is a budget bi. If all sets and functions are convex, we are in a
setting with diminishing return: as bi increases, any additional unit added allows for
less improvement in the value of ϕ(b). In mathematical terms, ϕ is convex.

Optimisation Part IB - Easter 2019

Lecture 6: Linear programming
Lecturer: Quentin Berthet

We saw in the previous lecture that one could understand minimization problems
with inequality constraints as cost minimization under resource budgets. Convexity of
f , h, and X implies convexity of the value function ϕ(b), that can be interpreted as
a diminishing returns. Another property obtained from strong duality also related to
economics is an interpretation of dual variables, by showing that λ∗i is the “shadow price”
for the i-th resource.

Theorem 2.6. If there is strong duality for optimization problem, with dual solution
λ∗, and ϕ is a differentiable function, then we have

∂ϕ

∂bi
(b) = λ∗i

Proof. If there is strong duality, then there is a supporting hyperplane with slope
λ∗, i.e.

ϕ(c) ≥ ϕ(b) + λ∗>(c− b) .
If the function ϕ is differentiable, the only vector that can have this property is its
gradient, so ∇ϕ(b) = λ∗.

This result illustrates further complementary slackness: if the i-th resource is not fully
used, then ∂ϕ/∂bi(b) = 0 : added value of any additional amount of resource i is 0.

3. Linear programming. In the next part of this course, we mainly focus on
the case of optimization problems with linear objectives and constraints. They are
traditionally presented in the general form, with c ∈ Rn, A ∈ Rm×n and b ∈ Rm in the
form

max c>x

s.t. Ax ≤ b ,

x ≥ 0 .

Note that they are convex minimization problems, formally as maximizing c>x is
equivalent to minimizing −c>x. Linear optimization is the only case where minimization
and maximization are both convex minimization problems, since a linear function is both
concave and convex. The constraint x ≥ 0 can always be used, as any unconstrained
variable can be represented by x+ ≥ 0 and x− ≥ 0 with x = x+ − x−. Further, by
introduction of a slack variable, all linear programs can be written in the following
manner, called standard form.

1

2 6: Linear programming

Definition 3.1. A linear program is in standard form if it is presented as

max c>x

s.t. Ax = b ,

x ≥ 0 .

Proof. To show that this is equivalent to the general form, we can take x̃ = (x, z) ≥ 0,
Ã = (A | Im), and Ãx̃ = b is equivalent to Ax+ z = b, or Ax ≤ b since z ≥ 0.

Remark. We note that if inequalities are in the other direction, changing one row
from ai to −ai. We recall that the feasible set X (b) = {x ∈ Rn : Ax = b , x ≥ 0} is
convex, as proved in Examples sheet.

Example 3.1. As an example, let

max x1 + x2

s.t. x1 + 2x2 ≤ 6 ,

s.t. x1 − x2 ≤ 3 ,

x1, x2 ≥ 0 .

It is possible to draw the feasible set, and even to see the solution, in an example with
few variables. The constraint can be represented as

(
1 2 1 0
1 −3 0 1

)
x1
x2
z1
z2

 =

(
6
3

)
.

3.1. Solutions of linear programs. Even though this is a convex optimization problem,
and formal guarantees on algorithms to solve it are obtained by using techniques
described in the first part of this course (barrier function, Newton’s method), we can
also use the fact that it is also a convex maximization problem, to make formal the
intuition that these problems are maximized “in the corners” of the optimization domain.
Informally, for any convex function f , and x = λy + (1− λ)z, we have

f(x) = f(λy + (1− λ)z) ≤ λf(y) + (1− λ)f(z) ≤ max{f(y), f(z)} .

It is therefore intuitive that to maximize a convex function on a convex set, one should
only worry about the extremities of segments or more formally, extreme points, as
defined here.

Definition 3.2. Let C be a convex set. We say that x ∈ C is an extreme point of
C if for all y, z in C such that x = (1− λ)y + λz with λ ∈ (0, 1), then x = y = z.

Lecture 6: Linear programming 3

Informally, x does not belong to any non-trivial segment of C. Note that this is
stronger than requiring x not to be in the interior of C, as points on the boundary of a
convex set are not always extreme points. We often show that a point x is extreme if for
all nonzero h ∈ Rn, for no ε > 0 do we have x+ εh and x− εh both in C.

Extreme points of the domain {x ∈ Rn : Ax = b, x ≥ 0} have a very special structure,
as seen in the following

Definition 3.3. A solution to Ax = b, with x ∈ Rn and A ∈ Rm×n is called a basic
solution if it has at most m non-zero entries. This set of non-zero entries is denoted by
B. It is called a basis and a variable xi is called basic if i ∈ B and non-basic if i /∈ B. A
basic solution that satisfies x ≥ 0 is called a basic feasible solution (BFS).

In this course, we make the following assumptions:

(i) The m rows of A are linearly independent vectors of Rn.

(ii) Every set of m rows is linearly independent.

(iii) Every basic solution is non-degenerate, i.e. has exactly m non-zero entries.

Under these assumptions, the idea is that for every basis B of m variables, there is
exactly one solution to ABx = b, since AB is a square invertible matrix, and therefore
only one basic solution with basis B. The first two are

Theorem 3.1. The extreme points of X (b) = {x ≥ 0 : Ax = b} are the basic
feasible solutions of Ax = b.

Proof. Let x be a basic feasible solution and y, z ∈ X (b) satisfy x = δy+(1−δ)z with
δ ∈ (0, 1). For the non-basic entries xi = 0, so yi = zi = 0, since they are nonnegative. As
a consequence, y and z are basic with basis B, as x is. Since AB is invertible, x = y = z.

To show the reverse, we prove that a non-basic solution is not an extreme point. Let
i1, . . . , ir be the non-zero entries of a non-basic solution x, with r > m. The r columns
ai1 , . . . , air are linearly dependent in Rm, so there exists w ∈ Rn with the same non-zero
entries such that

ai1wi1 + . . .+ airwir = 0

As a consequence, Aw = 0 so for any ε > 0, A(x± εw) = b, and for ε > 0 small enough
x± εw ≥ 0 in both cases. As a consequence, x is not an extreme point.

Optimisation Part IB - Easter 2019

Lecture 7: Solutions of linear programs
Lecturer: Quentin Berthet

In the previous lecture, we saw that in order to solve linear optimization problems in
the standard form

max c>x

s.t. Ax = b ,

x ≥ 0 .

It seems important to consider the extreme points of the set X (b) = {x ≥ 0 : Ax = b},
which correspond to basic feasible solutions. We show this formally in the following
theorem

Theorem 3.2. A linear program that is feasible and bounded is maximized at one
of the basic feasible solutions.

Proof. Let x be a maximum of c>x on X (b). If x has m non-zero entries, then it is
a basic feasible solution. If not, it has r > m non-zero entries by assumptions. We will
then show that there is a maximizer, with at least one more zero. By induction, this
yields a feasible maximizer with at most m non-zero entries.

In this case, since r > m (this is how the induction stops at m), by Theorem 3.1,
x is not an extreme point of X (b), so there exist y 6= z ∈ X (b) and λ ∈ (0, 1) such
that x = λy + (1− λ)z. As a consequence, we have that c>x = λc>y + (1− λ)c>z, so
c>x = c>y = c>z, so x, y, z are all optimal. Further, similarly to the proof of Theorem 3.1,
xi = 0 implies yi = 0 and zi = 0, so y, z share at least the zeros of x. If one of them has
one more zero, we are done.

Otherwise, we can consider x′ = λ′y+ (1−λ′)z = z+λ′(y−z), for any λ′ ∈ R. By the
properties above, x′ satisfies Ax = b and does not have more nonzero entries. Further,
if λ′ is close enough to λ, it is still feasible. All of its entries are linear functions of λ′,
with at least one of them having a non-zero slope, since y 6= z. As a consequence, it is
possible to take λ′ small enough so that x′ is still feasible, with one more zero entry.

Remark. This gives a formal confirmation to the idea that only extreme points are
important for linear programs. Further, there is an explicit, algebraic way to describe
extreme points of this feasible set. One can in theory compute, for all choices of basis B
of size m, the basic solution xB, check if xB ≥ 0, and compute c>xB. If the program is
feasible and bounded, one of these is optimal, and we can find it by examining all the
possibilities.

1

2 7: Solutions of linear programs

While that may be viable when m,n are small numbers as in our examples, this is in
general not a practical approach, as there are

(
n
m

)
possible choices of basis: if m and n

are large integers of the same order, this is exponential in n! Even if we are lucky and
find the optimal basis in of the first tries, we also have no way of knowing, as we have
no optimality criteria. In order to find one, we can turn to duality: this is a problem
with convex constraints and a convex objective (even when written in the minimization
form), so strong duality holds

3.2. Duality in linear programming.

Definition 3.4. For a linear program in the general form, the Lagrangian is

L(x, z, λ) = c>x− λ>(Ax+ z − b) .

Remark. The problem is equivalent to minimizing −c>x such that −Ax− z = −b,
giving a Lagrangian equal to −c>x− λ>(−Ax− z + b), following our definitions so far.
This is the same Lagrangian, up to a minus sign. Traditionally, convex optimization
is concerned with minimization of convex functions, and linear programming with
maximization of concave functions, so to go from one to the other sometimes requires to
change the sign of notations, as in the following.

The dual function is defined, for λ ∈ Rm, by

g(λ) = max
x≥0,z≥0

L(x, z, λ)

and Y = {λ ∈ Rm : maxx≥0,z≥0 L(x, z, λ) <∞}. The dual problem is defined as

min g(λ)

s.t. λ ∈ Y .

Computation of the LP dual. We have, rearranging terms

L(x, z, λ) = (c− A>λ)>x− λ>z + b>λ .

When maximizing over z ≥ 0, λ ∈ Y ⇒ λ ≥ 0, otherwise, letting an entry of z go to ∞,
the problem is unbounded. Similarly, when maximizing over x ≥ 0, λ ∈ Y ⇒ c−A>λ ≤ 0,
otherwise, letting an entry of x go to ∞, the problem is unbounded.

For any λ ≥ 0 such that c− A>λ ≤ 0, we therefore have

max
x≥0,z≥0

L(x, z, λ) = b>λ = g(λ) ,

taking zi 6= 0 and xi 6= 0 only when the corresponding entries of λ and c− A>λ are not
zero. As a consequence, by double inclusion, Y = {λ ≥ 0 : c− A>λ ≤ 0} and the dual
problem is

max b>λ

s.t. A>λ ≥ c ,

λ ≥ 0 .

Lecture 7: Solutions of linear programs 3

One finds that the dual problem in the standard form is the same, without the constraint
λ ≥ 0. More importantly, the dual of the dual problem is the original problem, called the
primal problem. This leads to the following result, a consequence of strong duality

Theorem 3.3. For an LP in the general form, if x∗ and λ∗ satisfy

• Ax∗ ≤ b and x∗ ≥ 0 (primal feasibility)

• A>λ∗ ≤ c and λ∗ ≥ 0 (dual feasibility)

• λ∗(b− Ax∗) = x∗>(c− A>λ∗) = 0 (complementary slackness)

then x∗ is optimal for the primal problem and λ∗ is optimal for the dual, there is strong
duality and c>x∗ = b>λ∗ is the value of the problem.

Remark. When the problem is in the standard form, this is replaced by

• Ax∗ = b and x∗ ≥ 0 (primal feasibility)

• A>λ∗ ≤ c (dual feasibility)

• x∗>(c− A>λ∗) = 0 (complementary slackness)

In this case, we have c>x∗ = c>x∗ − λ∗>(Ax∗ − b) = (c− A>λ∗)>x∗ + b>λ = b>λ∗.

Further, for any basic feasible solution in the standard form, we can find a corre-
sponding dual solution using complementary slackness. If the solution is optimal, this
dual is feasible. There is a corespondance between feasibility of the dual and optimality
of the primal (and vice-versa). Indeed, for any basis B and complement N , we have
x = xB +XN , with xN = 0 for a BFS. Feasibility implies Ax = ABxB + ANxN = b, so
xB = A−1B b, and the BFS is uniquely determined.

In this case, we can look for a dual solution λ that satisfies the optimality properties

0 = (c− A>λ)>x = (cB − A>Bλ)>xB + (cN − A>Nλ)>xN = (cB − A>Bλ)>xB .

Since xB ≥ 0 and we are looking for λ such that at least cB − A>Bλ ≤ 0, this imposes
λ = (A>B)−1cB.

Just like the basic feasible solution is entirely determined by B, with xN = 0 and
xB = A−1B b, so is the dual variable satisfying complementary slackness. It satisfies
cB −A>Bλ = 0, and if it satisfies c−A>λ ≤ 0, λ is dual feasible, and the BFS is optimal.

Optimisation Part IB - Easter 2019

Lecture 8: The simplex method
Lecturer: Quentin Berthet

3.3. The simplex method. We saw in the previous lecture that solutions of linear
programs were always at the extreme points, corresponding to basic feasible solutions.
Further, duality gives us an optimality criteria: for a basic feasible solution with basis
B, xN = 0 and xB = A−1B b, the dual variable λ = (A>B)−1cB satisfies complementary
slackness and cB − A>Bλ = 0. If it satisfies c− A>λ ≤ 0, it is dual feasible and the BFS
x is optimal.

This formulation can be used to design an optimization method: for every x′ such that
Ax′ = b, we have for any basis B Ax′ = ABx

′
B + ANx

′
N = b, so x′B = A−1B (b− ANx′N).

Fixing all but m entries of x′ leaves only one choice for the m remaining. The value of
the objective at x′ is given by

f(x′) = c>x′ = c>Bx
′
B + c>Nx

′
N

= c>BA
−1
B (b− ANx′N) + c>Nx

′
N

= c>BA
−1
B b+ (c>N − c>BA−1B AN)x′N .

Taking xB = A−1B b and xN = 0, the basic solution with basis B, the first term is
the objective value at x: c>x = c>BxB = c>BA

−1
B b. The second term is equal to (cN −

A>N (A>B)−1cB)>x′N = (cN −A>Nλ)>x′N , where λ corresponds to the basic solution x. This
confirms the analysis with duality: if A−1B b is feasible and cN − A>Nλ ≤ 0, then the
optimal choice is x′N = 0, and x is optimal for this problem.

More importantly, if this optimality criteria is not met and there is some j ∈ N such
that (cN − A>N(A>B)−1cB)j > 0, this suggests to start from x′ = x and to increase x′j,
thus increasing the objective. For any positive value of x′j, letting the other non-basic

coefficients at 0, the basic coefficients are determined by x′B = A−1B (b − ANx
′
N) =

A−1B (b− a(j)x′i) = A−1B b− x′jA−1B a(j), where a(j) is the j-th row of A. The basic entries

are linear functions of x′j: if they are all increasing in x′j, and the BFS A−1B b is feasible,
then x′ remains feasible, for any value of x′j, and the problem is unbounded. If at least
one of the entries is decreasing in x′j , it will eventually reach 0, and we have a new basis
B′, with this variable removed, and the j-th variable added. Under the assumptions on
A, there are not two variables that reach 0 at the same time: this would yield a basic
solution with less than m non-zero entries, which is not possible.

Together, this procedure can be summarized as follows:

1

2 8: The simplex method

Definition 3.5. Simplex algorithm:

1. Start in a basic feasible solution x with basis B, compute corresponding dual
variables, check if optimality conditions are met.

2. If not, identify j such that (cN − A>N(A>B)−1cB)j > 0 and increase xj, keeping the
other variables such that Ax = b, until a new variable reaches 0.

3. We now have a new basis B′, repeat this procedure until optimality conditions are
satisfied.

Remark. As noted in the previous lecture and at the beginning of this one, a dual
variable satisfying complementary slackness corresponding to the BFS can always be
obtained by solving cB − A>Bλ = 0. If cN − A>Nλ ≤ 0, then the BFS is optimal.

If in the second phase, no variable reaches 0, and xj can be increased indefinitely, the
problem is unbounded.

Following this algorithm, we go from basis to basis, always increasing the objective.
Because there are finitely many possible basis, we are bound to find an optimal solution.

Information to run this procedure by hand, without often inverting matrices, can be
stored in the following form.

Definition 3.6. The simplex tableau is an (n+ 1)× (m+ 1) array that summarizes
information about the problem, and the state of the algorithm at basis B

B: m entries N : n−m entries 1 entry

A−1B AB = I A−1B AN A−1B b

cTB − cTBA−1B AB = 0 cTN − cTBA−1B AN −cTBA−1B b

Remark. The first m rows, consist of A and b, multiplied by A−1B . In particular,
in the last column we observe the m nonzero (basic) entries of xB = A−1B b. In the last
row, the first m columns are c> − λ>A, for λ = (A>B)−1cB. In the last corner, we have
−f(x) = −c>BxB, for x being the BFS with basis B.

The dual optimality condition can be checked by observing the first m elements of
the last row. If they are all nonpositive, the basis B is optimal.

Lecture 8: The simplex method 3

The second step of the simplex algorithm can be implemented, by performing the
following operations, using the notation

aij ai0

a0j a00

1. First, at any round, we check if a0j ≤ 0 for every j > 0. If this holds, the basis B is
optimal.

2. If not, we choose j such that a0j > 0 and we take i ∈ {i′ : ai′j > 0} that minimizes
ai0/aij. This is equivalent to finding the first basic variable whose entry will reach 0
when increasing xj and maintaining feasibility, among all of those that will decrease.

∗ Issue 1: if aij ≤ 0 for all i, all entries will increase and as seen above, the problem is
unbounded.

∗ Issue 2: if multiple rows minimize ai0/aij, this means that a solution is degenerate,
which is not covered in this course.

3. Update the tableau: We multiply row i by 1/aij . For each row k 6= i, we add a multiple
−(akj/aij) of row i to row k. With this last step, we are changing to the tableau for the
following basis b′ in the simplex algorithm, without having to invert AB′

Example 3.2. We consider the linear program in the general form

max x1 + x2

s.t. x1 + 2x2 ≤ 6 ,

x1 − x2 ≤ 3 ,

x1, x2 ≥ 0 .

We convert it into standard form

max x1 + x2

s.t. x1 + 2x2 + z1 = 6 ,

x1 − x2 + z2 = 3 ,

x1, x2, z1, z2 ≥ 0 .

This particular linear program can conveniently be started in the basic feasible solution
with basis B = {3, 4} on the variables z1, z2, and basic feasible solution x = (0, 0, 6, 3)>.
This is particularly convenient, as AB = I2 for this basis.

4 8: The simplex method

The corresponding tableau is therefore directly written as

x1 x2 z1 z2
1 2 1 0 6

1 −1 0 1 3
1 1 0 0 0

1. Since a0j > 0 for j = 1, 2, variables x1 and x2 can be increased. We take j = 1, for
x1.

2. If aij ≤ 0 for all i, the problem is unbounded, which is not the case here. We have
{i′ : ai′j > 0} = {1, 2}, both basic variables will decrease when increasing x1 (as an
aside, this makes sense looking at the problem: the basic variables are slack, and for both
inequalities, the slack decreases when x1 increases). We take i that minimizes ai0/aij,
this is i = 2, corresponding to i = 2, for variable z2, which will reach zero first while
maintaining feasibility.

3. We multiply row i = 2 by 1/aij (here equal to 1), and add a multiple by −akj/aij
of row i to row k = 1, 3, obtaining the new tableau with basis B′ = {3, 1} and BFS
(3, 0, 3, 0)>.

x1 x2 z1 z2
0 3 1 −1 3

1 −1 0 1 3
0 2 0 −1 −3

We stopped here during the lecture, but we can now notice that for j = 2, a0j > 0, and
in this column, the only corresponding row is i = 1, with a12 = 3. Performing the same
operations, we obtain the new tableau, with basis B′ = {2, 1} and BFS (4, 1, 0, 0)>. The
maximum is at x1 = 4, x2 = 1, with objective 5.

x1 x2 z1 z2
0 1 1/3 −1/3 1

1 0 1/3 2/3 4
0 0 −2/3 −1/3 −5

Optimisation Part IB - Easter 2019

Lecture 9: Flow and transportation problems
Lecturer: Quentin Berthet

4. Applications of linear programming. Linear programming has many appli-
cations, and its origins are actually in solving optimization problems related to flows on
graphs.

Definition 4.1. A directed graph G = (V,E) consists in a set of vertices V (e.g.
{1, . . . , n}) and a set of ordered edges E ⊆ V × V .

When E is symmetric (i.e. (v, v′) ∈ E iff (v′, v) ∈ E), G is a directed graph.

Example 4.1. We consider the following exampe of a graph with three vertices

- -

-

1 3

2 V = {1, 2, 3}

E = {{1, 2}, {2, 3}, {3, 1}}

{1, 3} /∈ E

4.1. Minimum cost flow problem. For a graph G = (V,E) with |V | = n, we can
consider a flow on the network, denoted by xij, the quantity flowing from i to j. This
can represent water, goods, people, etc. depending on the application. The constraints
on this flow are inspired by physical or real-life constraints, and driven by

- A vector b ∈ Rn: the amount of flow bi that enters or leaves the graph at vertex i.
If bi > 0, we say that there is a source in i and if bi > 0, that there is a sink.

- A matrix C ∈ Rn×n: the cost cij associated to an edge (i, j). Note that it is
sufficient to define this matrix on E.

- Matrices M and M : lower and upper bounds, sometimes called capacities, on the
flow xij between i and j.

Definition 4.2. The minimum cost flow problem is the linear program

min
∑

(i,j)∈E

cijxij

s.t. bi +
∑

j:(j,i)∈E

xji =
∑

j:(i,j)∈E

xij , for all i ∈ V

mij ≤ xij ≤ mij .
1

2 9: Flow and transportation problems

Remark. The first line of constraints states that for every vertex i ∈ V , the amount
of flow entering the vertex (LHS of the equation) must be equal to the amount leaving
(RHS of the equation): no flow is stored in the vertex. This is a physical constraint,
making sure that the variable x denotes indeed a real flow. The inequalities represent
capacity constraints for each edge. The equality constraints can be written in the form
Ax = b, with each edge corresponding to a column, and for the k-th column: aik = 1 for
vertex i where the k-th edge starts, −1 for the vertex where it ends, and 0 otherwise.

For feasibility of the problem (i.e. to have a flow x that is feasible), we need
∑

i∈V bi = 0,
as can be seen from summing all the equality constraints. It can be understood as a global
physical constraint: what enters the network must come out. This can be transformed
into a problem where bi = 0 for all i ∈ V , known as a circulation problem, by adding new
vertex and edges: An “outside” vertex connected to all other vertices with uncapacited
edges, with flow bi along the edge between the outside and vertex i.

Proposition 4.1. The Lagrangian for this problem, defined over the feasible set
X = {x |mij ≤ xij ≤ mij}, with h(x) = b as

∑
j:(i,j)∈E xij −

∑
j:(j,i)∈E xji = bi can be

written directly for the circulation problem (i.e. where bi = 0)

L(x, λ) =
∑

(i,j)∈E

cijxij −
∑
i∈V

λi

(∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji

)
=
∑

(i,j)∈E

(cij − λi + λj)xij .

Recalling the Lagrange sufficiency theorem (if x minimizes L(x, λ) over X for some λ
and h(x) = b, then x is optimal), we have the following

Theorem 4.1. Let x be a feasible flow (i.e. x ∈ X and h(x) = b), and λ ∈ Rn s.t.

For all i, j such that cij − λi + λj > 0 , we have xij = mij

For all i, j such that cij − λi + λj < 0 , we have xij = mij

For all i, j such that mij ≤ xij ≤ mij , we have cij − λi + λj = 0 ,

then x is a minimal flow.

Proof. The conditions directly imply that x minimizes L(x, λ) over X .

4.2. Transportation problem. They are a special case of minimum cost flow problems,
with disjoint sets of suppliers S = {1, . . . , n} and of consumers C = {1, . . . ,m}.

Definition 4.3. Over a bipartite graph between S and C (meaning with edges
only going from S to C, i.e. E ⊂ S ×C), given a list of supplies s1, . . . , sn and demands
d1, . . . , dn such that

∑n
i=1 si =

∑m
j=1 dj , the transportation problem (or optimal transport

Lecture 9: Flow and transportation problems 3

problem) is defined as

min
n∑
i=1

m∑
j=1

cijxij

s.t.
m∑
i=1

xij = si , for all j ∈ S

n∑
j=1

xij = di , for all i ∈ C

x ≥ 0 .

Even though this is a special case, it actually covers up to modification all cost
minimization problems

Theorem 4.2. Every minimum cost flow problem with finite capacities or nonnega-
tive costs has an equivalent transportation problem.

Proof. We can first assume that mij = 0 for all (i, j) ∈ E. If mij 6= 0 for some
specific i and j, it can be replaced by 0 without changing the problem, by also changing
mij to mij , bi to bi−mij and bj to bj +mij . With these new constraints, for every feasible
xij in the old problem, xij +mij is feasible in the new problem. This can be interpreted
as measuring the flow in another unit, with zero placed in another value (think Celsius
and Kelvin). With no further loss of generality, all edges have a finite capacity. If not,
we can always replace them with an arbitrarily large number, say greater than

∑
i∈V |bi|.

As long as all costs are nonnegative, this does not affect the minimization problem.

Under these unrestrictive assumptions, we can create the following transport problem,
between suppliers associated to an edge (i, j) and consumers to vertices. They are
connected in the following manner.

ij

i

j

c(i,j),i = 0

c(i,j),j = cij

mij

∑
k:(i,k)∈Emik − bi

∑
k:(j,k)∈Emjk − bj

Any feasible flow in the original problem can be decomposed into mij − xij flowing in
the top edge (between (i, j) and i) and xij in the bottom edge (between (i, j) and j).
One can check directly that feasibility of x for the original problem implies feasibility of
this new flow for the transport problem. The value of the objective is also the same for
both problems.

Optimisation Part IB - Easter 2019

Lecture 10: Transport algorithm
Lecturer: Quentin Berthet

We recall that the transport problem between n suppliers and m customers, introduced
in the previous lecture, is defined as

min
n∑
i=1

m∑
j=1

cijxij

s.t.
m∑
j=1

xij = si , for all i ∈ S

n∑
j=1

xij = di , for all i ∈ C

x ≥ 0 .

Proposition 4.2. If for some feasible x we have dual variables λ ∈ Rn (for
suppliers) and µ ∈ Rm (for customers) such that

cij ≥ λi + µj for all i, j

and
(cij − (λi + µj))xij = 0 for all i, j ,

then x is optimal.

Proof. We write the Lagrangian of this problem

L(x, λ, µ) =
n∑
i=1

m∑
j=1

cijxij +
n∑
i=1

λi

(
si −

m∑
j=1

xij

)
+

m∑
j=1

µj

(
dj −

n∑
i=1

xij

)
=

n∑
i=1

m∑
j=1

(cij − (λi + µj))xij +
n∑
i=1

λisi +
m∑
j=1

µjdj .

By Theorem 3.3 on optimality conditions for linear programs, there is primal and dual
feasibility, as well as complementary slackness, and the claim holds.

For transportation problems, the simplex algorithm can be efficiently run by using
a transportation tableau containing at any iteration the flow variables xij, the dual
variables λi and µj , as well as the costs cij and demands and supplies di and sj , constant
throughout the algorithm iteration.

1

2 10: Transport algorithm

µ1 µ2 . . . µm

λ1 x11 c11 x12 c12 x1m c1m s1

... .
...

λn xn1 cn1 xn2 cn2 xnm cnm sn
d1 d2 . . . dm

It can also be written with sums of dual variables λi + µj, particularly for variables
set to 0 in order to track the condition cij ≥ λi + µj, as in this 4-by-3 tableau.

µ1 µ2 µ3 µ4

λ1 + µ1 λ1 + µ2 λ1 + µ3 λ1 + µ4

λ1 x11 c11 x12 c12 x13 c13 x14 c14 s1
λ2 + µ1 λ2 + µ2 λ2 + µ3 λ2 + µ4

λ2 x21 c21 x22 c22 x23 c23 x24 c24 s2
λ3 + µ1 λ3 + µ2 λ3 + µ3 λ3 + µ4

λ3 x31 c31 x32 c32 x33 c33 x34 c34 s3
d1 d2 d3 d4

4.3. The transport algorithm. The first part of the algorithm is to construct an initial
basic feasible solution. This is achieved by following these steps:

- Start with any edge variable (say x11), and increase it until either supply si or
demand dj (here, s1 or d1 for the choice x11) is satisfied.

- If supply is satisfied, move to the next supplier and repeat the first step.

- If demand is satisfied, move to the next customer and repeat the first step.

At the end, supply and demand should be satisfied simultaneously. If they are satisfied
earlier, the problem is degenerate. We illustrate this process through the following
example. with supplies {14, 10, 9} and demands {12, 5, 8, 8} (both summing to 33: the
problem is feasible).

- We start with the edge between the first supplier (with s1 = 14) and the first
customer (with d1 = 12). We augment the flow until one of these is met, so x11 = 12.

- As demand is satisfied first, we move to the next customer, with d2 = 5. We
augment the flow until x12 = 2, and the overall supply of the first supplier is
exhausted, i.e. x11 + x12 = 12 + 2 = 14 = s1.

- We repeat these steps until the end.

We obtain the following feasible flow, where the values xij are written in small font
above the corresponding arrows.

Lecture 10: Transport algorithm 3

s1 = 14

s2 = 10

s3 = 9

d1 = 12

d2 = 5

d3 = 8

d4 = 8

12

2

3

7

1

8

The initial corresponding tableau is

5 3 0 2
0 2

0 12 5 2 3 4 6 14
9 6

4 2 3 7 7 4 1 10
7 5

2 5 6 1 2 8 4 9
12 5 8 8

The flows are in the left part of each cell, written only when they are not 0. The basic
dual variables are determined by setting xij = λi + µj when xij > 0, and λi + µj is
only written in the top part of the cell when xij = 0, as otherwise the information is
redundant.

Proposition 4.3 (Properties of basic feasible solutions). The set of edges with
positive flow created with this process form a graph that is connected (it goes through
all the vertices) and has no cycle (we do not go back to a previously visited node). It
therefore forms a spanning tree T (i.e. a connected graph with no cycles).

- We have xij = 0 whenever (i, j) /∈ T , by definition.

- By complementary slackness, λi + µj = cij for (i, j) ∈ T .

- Setting λ1 = 0, we have n+m−1 linear equations for n+m−1 variables (number
of edges in the spanning tree on n+m vertices), the process gives a unique solution.

As in every implementation of the simplex, once we have a basic feasible solution, we
can pivot to another one with the following rules

4 10: Transport algorithm

- If cij ≥ λi + µj for all (i, j) /∈ T , then the flow is optimal.

- Otherwise, cij < λi + µj for some (i, j) /∈ T . This edge and those in T form a
unique cycle.

- In the case of non-degeneracy, we have xi′j′ > 0 on the edges of T so we can
increase xij while keeping the flow feasible, decreasing the value of the Lagrangian
until xi′j′ = 0 for some (i′, j′) ∈ T .

- Update the dual variables and repeat.

We apply these rules in the example considered above: dual feasibility is violated for
i = 2, j = 1: 9 = λ2 + µ1 > c21 = 2. We can therefore increase x21 by θ > 0, adjusting
on the cycle along the four top edges for feasibility, and diminish the total cost.

s1 = 14

s2 = 10

s3 = 9

d1 = 12

d2 = 5

d3 = 8

d4 = 8

12− θ

2 + θ

θ
3− θ

7

1

8

This is done until x22 = 0, for θ = 3, and we obtain the following flow

s1 = 14

s2 = 10

s3 = 9

d1 = 12

d2 = 5

d3 = 8

d4 = 8

9

5

3

7

1

8

The associated tableau, with updated dual variables is

Lecture 10: Transport algorithm 5

5 3 7 9
7 9

0 9 5 5 3 4 6 14
0 6

−3 3 2 7 7 4 1 10
0 −2

−5 5 6 1 2 8 4 9
12 5 8 8

The optimality conditions are again violated for c24 = 1 < 6 = λ2 + µ4, and we can
increase x24 by ε while keeping the flow feasible along the newly formed cycle, obtaining
the following flow

s1 = 14

s2 = 10

s3 = 9

d1 = 12

d2 = 5

d3 = 8

d4 = 8

9

5

3

ε

7− ε

1 + ε

8− ε

We increase until x24 = ε = 7, when x23 = 0, with the following solution

s1 = 14

s2 = 10

s3 = 9

d1 = 12

d2 = 5

d3 = 8

d4 = 8

9

5

3

7

8

1

The corresponding tableau with updated variables is given by

6 10: Transport algorithm

5 3 2 4
2 4

0 9 5 5 3 4 6 14
0 −1

−3 3 2 7 4 7 1 10
5 3

0 5 6 8 2 1 4 9
12 5 8 8

We now have λi + µj ≤ cij for all i, j, so the solution is optimal.

Optimisation Part IB - Easter 2019

Lecture 11: Maximum flow and minimum cut
Lecturer: Quentin Berthet

4.4. The maximum flow problem. We consider in this lecture a particular kind of
flow problem, with a single source and sink, and where the objective is to have the
maximal amount of flow between the source and the sink, under capacity constraints.

Definition 4.4. The maximum flow problem is the linear program

max δ

s.t.
∑

j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0 , for all 1 < i < n

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = δ , for i = 1

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = −δ , for i = n

0 ≤ xij ≤ Cij .

Remark.

- The constraints describe a total flow of δ, flowing from 1 to n. The first constraint
line describes the flow constraint for all nodes except the source and the sink:
what comes in must come out. The second constraint describes that a total flow
of δ flows out of 1, and the third one that a total flow of δ flows into n. The final
constraint is that on any directed edge (i, j), the nonnegative flow xij is bounded
by Cij.

- The problem is a special case of the minimum cost problem, by taking a cost equal
to 0 for all (i, j) ∈ E, and add an edge (n, 1) with cost −1 and infinite capacity
on this edge. The total cost is minimized by maximizing the flow along (n, 1), i.e.
the whole network.

4.4.1. Relationship between cuts and flows. There is a very simple way to give upper
bounds for maximum flow problems, through the understanding of “bottlenecks”, or
cuts.

Definition 4.5. A cut of a graph G is the partition of V in two sets (S, V \ S).

1

2 11: Maximum flow and minimum cut

The capacity of a cut is given by

C(S) =
∑

(i,j)∈S×(V \S)

Cij .

Intuitively, for any partition, the amount of flow that can go from S to V \ S cannot
be greater than this capacity. This can be made formal in the following result.

Proposition 4.4. Let x be a feasible flow with objective δ. For any cut (S, V \ S)
such that 1 ∈ S and n ∈ V \ S, we have δ ≤ C(S).

Proof. Let X, Y ⊆ V , and fx(X, Y) =
∑

(i,j)∈E∩(X×Y) xij . We denote by E∩(X×Y)
the edges that start in X and end in Y . Note that X and Y need not be disjoint. For
any S such that 1 ∈ S and n ∈ V \ S, we have by summing the flow constraints in S

δ =
∑
i∈S

(∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji

)
= fx(S, V)− fx(V, S)

= fx(S, S) + fx(S, V \ S)− fx(V \ S, S)− fx(S, S)

≤ fx(S, V \ S) ≤ C(S) .

As a consequence, it seems that finding the partition separating 1 and n with the
smallest possible cut can give a very good upper bound on the maximum flow. Again,
this intuition is confirmed by the following result

Theorem 4.3 (Max-flow Min-cut). Let δ∗ be the optimal solution of the maximum
flow problem. Then, we have

δ∗ = min{C(S) : S ⊆ V , 1 ∈ S , n ∈ V \ S} .

Proof. The idea is to construct a cut with capacity C(S). A path v0, . . . , vk is a
sequence of vertices where every vertex in the sequence is connected to the following
one in one direction or another. It is called an augmenting path if xvi−1vi < Cvi−1vi or
xvivi−1

> 0 for every i = 1 . . . k. If there exists an augmenting path from i to n, the flow
is not optimal: indeed, the variables can be slightly modified to add an arbitrarily small
amount of flow from i to n, as none of the constraints along this path are saturated.

Assume that x is optimal and that S = {1}∪{i ∈ V : ∃ augmenting path from 1 to i}.
By the point proved above, since x is optimal, n ∈ V \ S. As a consequence, we have
that

δ = fx(S, V \ S)− fx(V \ S, S) = fx(S, V \ S) = C(S) .

- The first equality derives from previous computations.

Lecture 11: Maximum flow and minimum cut 3

- The second equality holds because xij = 0 for every (i, j) ∈ E ∩ (V \ S × S).

- The third equality holds because xij = Cij for every (i, j) ∈ E ∩ (S × V \ S).

Indeed, if the second and third equality do not hold, j can be added to the augmenting
path, and does not belong to S.

4.4.2. The Ford-Fulkerson algorithm. There is an easy-to-implement algorithm to find
an optimal solution to the maximum flow problem, based on the notion of augmenting
path introduced above.

Definition 4.6 (Ford-Fulkerson algorithm).

1. Start with a feasible flow, (often x = 0).
2. Find an augmenting path from 1 to n

- If there is none, STOP. By the proof of Theorem 4.3, the flow is optimal.
- If there is one, increase (push) the flow while all constraints are satisfied.

3. Go to step 2.

In practice, augmenting paths can be found and tested “by eye”, as can be seen in
the following example.

Example 4.2. Consider the following graph, with capacities denoted above the
directed edges.

1

c

a b

n

d

5

1

5

5

2

5

4

Starting with a flow x = 0 everywhere, we apply the algorithm along the following
augmenting paths from 1 to n

- Along path 1, a, b, n: push 1 unit of flow (i.e. until edge a to b is at capacity).
- Along path 1, a, d, n: push 4 unit of flow (i.e. until edge a to d is at capacity).
- Along path 1, c, d, n: push 1 unit of flow (i.e. until edge d to n is at capacity).

There is afterwards no augmenting path, the flow is optimal. This can be confirmed by
considering the cut of this graph into {1, a, c, d} and {b, n}: the capacity of this cut is
5 + 1 = 6, the sum of the capacities of the edges crossing the cut (a to b and d to n), it
is equal to the amount of flow in the proposed solution.

4 11: Maximum flow and minimum cut

Remark.

- As described in the example, the max-flow min-cut theorem allows to confirm the
optimality of a cut, by finding a cut whose capacity matches the proposed flow.

- Another interesting property that can be obtained from this theorem is the
integrality or rationality of optimal solutions: If the capacities are integer and we
start from an integral solution (e.g. x = 0), the algorithm maintains at all times
the integrality of the solution. For a bounded program, it is therefore guaranteed
to terminate. When it terminates, it gives an optimal flow with integer entries.
The same is true for rational capacities.

4.5. The bipartite matching problem.

Definition 4.7. A matching of a graph (V,E) is a subset of edges with no shared
vertices. A matching M is a perfect matching if it covers every vertex, i.e. if |M | = |V |/2.

Definition 4.8. A graph is k-regular if every vertex has degree k.

An interesting property about regular graphs can be proved using what we know
about flow problems, even though it is seemingly disconnected from this topic.

Theorem 4.4. Every k-regular bipartite graph has a perfect matching.

Proof. We create another graph, whose vertices are composed of: the original
vertices, partitioned in two sets of L and R (for left and right), a source s, and a sink t.
We note by n the number of original vertices |V |, and note that since G is k-regular
and bipartite, |L| = |R| = n/2.

The source s is connected to all vertices of L by edges of capacity 1. The sink t is
connected to all vertices of R by edges of capacity 1. On the original edges between L
and R, the capacity is set to +∞.

We consider the maximum flow problem on this graph, from s to t. A flow with 1
in every new edge and 1/k in every old edge is feasible: it satisfies the flow equations
at each vertex, and satisfies the capacity constraints. The total value of this flow is
n/2 = |V |/2 = |L| = |R|.

Furthermore, cutting between the source and the rest of the newly constructed graph,
the capacity of this cut is also n/2 = |L|. As a consequence, the optimal value of a cut
is n/2.

If we start the Ford-Fulkerson at x = 0, by the remark above, the algorithm terminates
at an optimal integer solution with value n/2. As a consequence, every vertex in L
has an incoming flow of 1, and an integral outgoing flow of 1, to only one vertex in R.
Similarly, every vertex in R has an outgoing flow of 1, and an integral incoming flow of
1, from only one vertex in L. The edges on which there is a flow therefore form a perfect
matching.

Lecture 11: Maximum flow and minimum cut 5

More generally, it is possible to characterize all the bipartite graphs that have perfect
matchings. It can also be proved using the max-flow min-cut theorem. It is sometimes
referred to as Hall’s marriage theorem.

Theorem 4.5 (Hall’s theorem). A bipartite graph with V = L ∪ R and |L| = |R|
has a perfect matching if and only if |N(X)| ≥ |X| for every subset X ⊆ L, where

N(X) = {j ∈ R : i ∈ X , (i, j) ∈ E} .

Optimisation Part IB - Easter 2019

Lecture 12: Noncooperative games
Lecturer: Quentin Berthet

5. Game theory. Another application of linear programming is the analysis of
games: situations where several players make actions in order to maximize some reward.
In this course, we will consider cases where there are two players and each one has a
finite set of actions.

5.1. Notions and definitions.

Definition 5.1. In a two-player game, with m actions for player 1 and n actions
for player 2, we define the payoff matrices as P,Q ∈ Rm×n such that, when player 1
plays action i and player 2 action j

- Pij = payoff of player 1.
- Qij = payoff of player 2.

These matrices contain all the information necessary to the analysis of a game. We
consider that players can have a strategy where they chose randomly one of the actions,
with some probabilities.

Definition 5.2. The set of possible strategies are sets X and Y defined by

X =
{
x ∈ Rm

≥0 :
m∑
i=1

xi = 1
}

Y =
{
y ∈ Rn

≥0 :
n∑
i=1

yi = 1
}
.

A pure strategy is one that choses one of the actions with probability one. It is a vector
of the canonical basis, with all entries equal to 0 except the i-th entry, equal to 1.

Both players chose their actions, potentially at random, without cooperating or
communicating. The choices are independent, and they have no knowledge of what the
other player will do.

1

2 12: Noncooperative games

Proposition 5.1. For strategies x and y, the profile (x, y) ∈ X × Y has expected
payoff x>Py for the first, or row player. It is sometimes written p(x, y).

Proof.

x>Py =
m∑
i=1

xi(Py)i =
m∑
i=1

xi

n∑
j=1

Pijyj =
∑
i,j

Pijxiyj

=
∑
i,j

Pij ×P(player 1 plays i, player 2 plays j) = E[payoff]

Example 5.1. We often represent games with both payoff matrices in the same
table with, at entry i, j the information (Pij, Qi,j). As an example, in the prisoner’s
dilemna game, the two players (suspects interrogated by the authorities) can chose to
be silent (S) or to talk (T). This is written out in the following table.

S T
S (2,2) (0,3)
T (3,0) (1,1)

There are three possible outcomes:

- Both suspects are silent, they stay a few weeks in detention (payoff = 2 for both
players).

- Both suspects talk, and both get five years of detention (payoff = 1 for both of
them, worst than in the first case).

- One talks and gets no detention (payoff = 3) and the other one stays silent and
gets ten years because of his former accomplice’s testimony (payoff = 0).

We note that in this game, whatever the other player does, it is always bertter for a
player to talk.

Definition 5.3. For two strategies x, x′ of the row player, x is said to strictly
dominate x′ if, for every y ∈ Y

p(x, y) > p(x′, y) .

Definition 5.4. If x, y both strictly dominate all other strategies, (x, y) is called a
dominant strategy equilibrium.

Example 5.2. In the game of Chicken, two players are going in opposite directions
on a one-way street. They can either chicken out (C) and yield, letting the other one go.
They can also decide to dare (D) and go ahead without stopping. The outcomes are
given as follows.

Lecture 12: Noncooperative games 3

C D
C (2,2) (1,3)
D (3,1) (0,0)

There are three possible outcomes:

- If both players chicken, they both lose some time, but not more than the other
driver, and they avoid an accident (payoff = 2). It is the second-best outcome for
each of them.

- If both players, they both die (payoff = 0). It is the worst outcome for both of
them.

- If one dares (payoff = 3) and the other chickens (payoff = 1), the first player has
the best outcome, and the other player loses more time.

We note that in this game, there is no dominant strategy. It is however possible to
design a safe strategy: to chose a strategy for which the worst payoff (over all possible
actions of the opposite player) is as high as possible. If the first player dares the worst
possible payoff is 0 (if the other one dares as well), while if the first player chickens, the
worst payoff is 1 (if the other player dares). It is therefore safer to chicken out.

Definition 5.5. We call maximin strategy the solution to the problem

min
j∈{1,...,n}

m∑
i=1

xiPij .

It is a pessimistic approach consisting in maximizing (in x) the minimum value of p(x, aj)
(over aj). It can be written as the linear program

max v

s.t.
m∑
i=1

xiPij ≥ v , for all 1 ≤ j ≤ n

m∑
i=1

xi = 1

x ≥ 0 .

As noted above, in the game of chicken, the solution to this problem is a pure action.
Note that it is not in general the best choice for every action of the other player, in
hindsight.

Definition 5.6. A strategy x ∈ X is the best response to y ∈ Y if for all x′ ∈ X .

p(x, y) ≥ p(x′, y) .

Observe the difference with the notion of domination in Definition 5.3: the quantifiers
are important.

4 12: Noncooperative games

Definition 5.7. If a profile (x, y) ∈ X × Y satisfies

- x is a best response to y
- y is a best response to x,

the profile is called a Nash equilibrium.

Theorem 5.1 (Nash, 1951). Every bimatrix game has an equilibrium. In the game
of chicken, it is (C,D) and (D,C).

5.2. Zero-sum games.

Definition 5.8. A game where Q = −P (i.e. Pij = −Qij) is called a zero-sum
game.

Theorem 5.2 (von Neuman, 1928). Let P ∈ Rm×n in a zero-sum game, X and Y
be a set of strategies. It holds that

max
x∈X

min
y∈Y

p(x, y) = min
y∈Y

max
x∈X

p(x, y) .

Proof. We consider the LP formulation of the left-hand side problem in Definition 5.5
and write its Lagrangian, with slack variable z for the n first inequalities with associated
dual variable y, and dual variable w for the simplex constraint.

L(v, x, z, w, y) = v +
n∑
j=1

yj

(m∑
i=1

xiPij − zj − v
)
− w

(m∑
i=1

xi − 1
)

=
(

1−
n∑
j=1

yj

)
v +

m∑
i=1

xi

(n∑
j=1

Pijyj − w
)
−
∑
j=1n

yjzj + w .

For fixed dual variables w, y, this program has a finite maximum over v ∈ R and x ≥ 0
if and only if

n∑
j=1

yj = 1 ,
n∑
j=1

Pijyj ≤ w for all 1 ≤ i ≤ m, y ≥ 0 .

The dual problem is therefore

min w

s.t.

n∑
j=1

Pijyj ≤ w , for all 1 ≤ i ≤ m

n∑
j=1

yj = 1

y ≥ 0 .

This dual problem is the right-hand side problem. By strong duality, both sides are
therefore equal.

Lecture 12: Noncooperative games 5

Every zero-sum game has a Nash equilibrium, characterized by the result above.

Theorem 5.3. In a zero-sum game, a pair of strategies (x, y) is a Nash equilibrium
if and only if

min
y′∈Y

p(x, y′) = max
x′∈X

min
y′∈Y

p(x′, y′)

max
x′∈X

p(x′, y) = min
y′∈Y

max
x′∈X

p(x′, y′) .

